
Nominal Threshold Voltage	Threshold Suffix Designation
4.63 V	L
4.38 V	М
4.00 V	J
3.08 V	Т
2.93 V	S
2.63 V	R
2.32 V	Z

Table 1. THRESHOLD SUFFIX SELECTOR DESCRIPTION

Table 2. PIN DESCRIPTION

Pin Number			
CAT811	CAT811 CAT812 Pin Name		Description
1	1	GND	Ground.
2	-	RESET	Active LOW reset. $\overline{\text{RESET}}$ is asserted if V_{CC} falls below the reset threshold and remains low for at least 140 ms after V_{CC} rises above the reset threshold.
_	2	RESET	Active HIGH reset. RESET is asserted if V _{CC} falls below the reset threshold and remains high for at least 140 ms after V _{CC} rises above the reset threshold.
3	3	MR	Manual Reset Input. A logic LOW on $\overline{\text{MR}}$ asserts RESET. RESET remains active as long as $\overline{\text{MR}}$ is LOW and for 140 ms after $\overline{\text{MR}}$ returns HIGH. The active low input has an internal 20 k Ω pull-up resistor. The input should be left open if not used.
4	4	V _{CC}	Power supply voltage that is monitored.

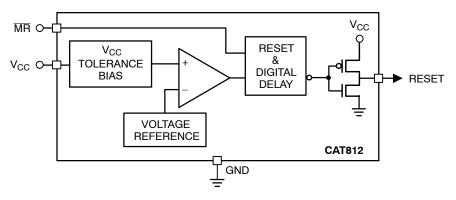


Figure 1. Block Diagrams

Table 3. ABSOLUTE MAXIMUM RATINGS

Parameters	Ratings	Units
Any pin with respect to ground	-0.3 to +6.0	V
Input Current, V _{CC}	20	mA
Output Current RESET, RESET	20	mA
Rate of Raise, V _{CC}	100	V/µs
Continuous Power Dissipations Derate 4 mW/°C above +70°C (SOT-143)	320	mW
Storage Temperature Range	–65 to +105	°C
Operating Ambient Temperature Range	-40 to +85	°C
Lead Soldering Temperature (10 seconds)	+300	°C

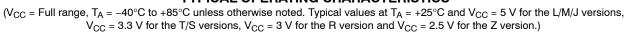
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

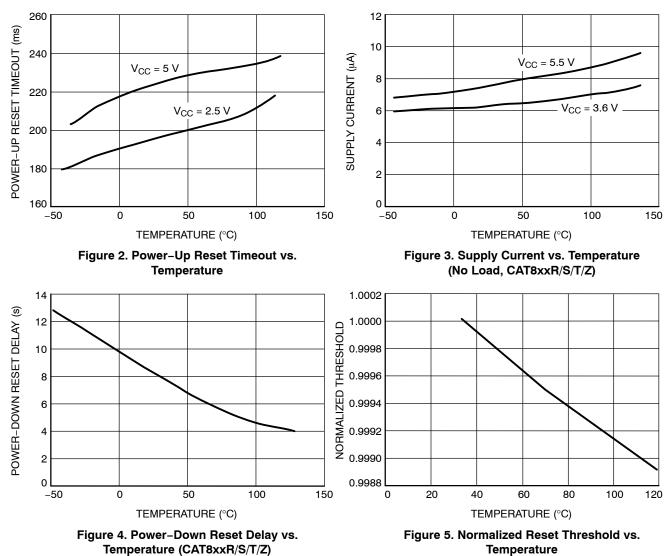
Table 4. ELECTRICAL OPERATING CHARACTERISTICS

(V_{CC} = Full range, T_A = -40°C to +85°C unless otherwise noted. Typical values at T_A = +25°C and V_{CC} = 5 V for the L/M/J versions, V_{CC} = 3.3 V for the T/S versions, V_{CC} = 3 V for the R version and V_{CC} = 2.5 V for the Z version.)

Parameter	Symbol	Con	Min	Тур	Max	Units				
V _{CC} Range		$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$		1.0		5.5	V			
		$T_{A} = -40^{\circ}$	1.2		5.5	1				
Supply Current	I _{CC}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	V _{CC} < 5.5 V, J/L/M		8	20	μΑ			
			V _{CC} < 3.6 V, R/S/T/Z		6	15	1			
Reset Threshold	V _{TH}	L Threshold	T _A = +25°C	4.56	4.63	4.70	V			
Voltage			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	4.50		4.75	1			
		M Threshold	T _A = +25°C	4.31	4.38	4.45	1			
			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	4.25		4.50	1			
		J Threshold	T _A = +25°C	3.93	4.00	4.06				
			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	3.89		4.10				
	T Threshold	T _A = +25°C	3.04	3.08	3.11					
			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	3.00		3.15				
				S Threshold	T _A = +25°C	2.89	2.93	2.96	1	
							$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.85		3.00
			R Threshold	T _A = +25°C	2.59	2.63	2.66	1		
			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.55		2.70				
		Z Threshold	T _A = +25°C	2.28	2.32	2.35				
			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	2.25		2.38				
Reset Threshold Tempco					30		ppm/°			
/ _{CC} to Reset Delay (Note 3)		V _{CC} = V _{TH} to		20		μs				
Reset Active Timeout Period		T _A = -40	140	240	400	ms				

Production testing done at T_A = +25°C; limits over temperature guaranteed by design only.
Glitches of 100 ns or less typically will not generate a reset pulse.
RESET output for the CAT811; RESET output for the CAT812.

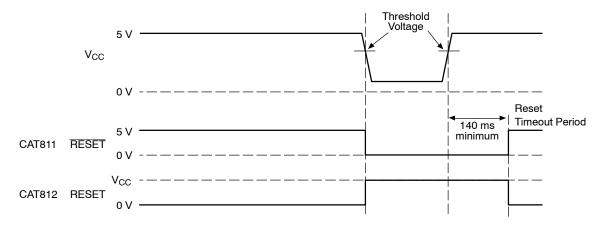

Table 4. ELECTRICAL OPERATING CHARACTERISTICS $(V_{CC} = Full range, T_A = -40^{\circ}C to +85^{\circ}C unless otherwise noted. Typical values at T_A = +25^{\circ}C and V_{CC} = 5 V for the L/M/J versions, V_{CC} = 3.3 V for the T/S versions, V_{CC} = 3 V for the R version and V_{CC} = 2.5 V for the Z version.)$


Parameter	Symbol	Conditions	Min	Тур	Max	Units
RESET Output	V _{OL}	$V_{CC} = V_{TH min}$, $I_{SINK} = 1.2 \text{ mA CAT811R/S/T/Z}$			0.3	V
Voltage Low (Push-pull, active		$V_{CC} = V_{TH min}$, $I_{SINK} = 3.2 \text{ mA CAT811J/L/M}$			0.4	
LOW, CAT811)		V_{CC} > 1.0 V, I_{SINK} = 50 μ A			0.3	
RESET Output Voltage High	V _{OH}	$V_{CC} = V_{TH max}$, $I_{SOURCE} = 500 \ \mu A \ CAT811 R/S/T/Z$	0.8V _{CC}			V
(Push-pull, active LOW, CAT811)		V _{CC} = V _{TH max} , I _{SOURCE} = 800 µA CAT811J/L/M	V _{CC} – 1.5			V
RESET Output Voltage Low	V _{OL}	$V_{CC} > V_{TH max}$, I_{SINK} = 1.2 mA CAT812R/S/T/Z			0.3	V
(Push-pull, active HIGH, CAT812)		V _{CC} > V _{TH max} , I _{SINK} = 3.2 mA CAT812J/L/M			0.4	
RESET Output Voltage High (Push-pull active HIGH, CAT812)	V _{OH}	1.8 V < V _{CC} \leq V _{TH min} , I _{SOURCE} = 150 μ A	0.8V _{CC}			V
MR Minimum Pulse Width	t _{MR}		10			μs
MR Glitch Immunity		(Note 2)		100		ns
MR to RESET Propagation Delay	t _{MD}	(Note 3)		0.5		μs
MR Input Threshold	V _{IH}	V _{CC} > V _{TH (MAX)} , CAT811/812L/M/J	2.3V			V
١	V _{IL}				0.8	
	VIH	V _{CC} > V _{IH (MAX)} , CAT811/812R/S/T/Z	0.7V _{CC}			
	V _{IL}				0.25V _{CC}	
MR Pull-up Resistance			10	20	75	kΩ

1. Production testing done at $T_A = +25^{\circ}C$; limits over temperature guaranteed by design only.

<u>Construction</u>
<u>Glitches of 100 ns or less typically will not generate a reset pulse.</u>
<u>RESET output for the CAT811; RESET output for the CAT812.</u>

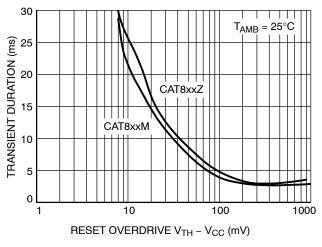
TYPICAL OPERATING CHARACTERISTICS

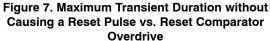


DETAILED DESCRIPTION

Reset Timing

The reset signal is asserted LOW for the CAT811 and HIGH for the CAT812 when the power supply voltage falls below the threshold trip voltage and remains asserted for at least 140 ms after the power supply voltage has risen above the threshold.





V_{CC} Transient Response

The CAT811/812 protect μ Ps against brownout failure. Short duration transients of 4 μ s or less and 100 mV amplitude typically do not cause a false RESET.

Figure 7 shows the maximum pulse duration of negative–going V_{CC} transients that do not cause a reset condition. As the amplitude of the transient goes further below the threshold (increasing $V_{TH} - V_{CC}$), the maximum pulse duration decreases. In this test, the V_{CC} starts from an initial voltage of 0.5 V above the threshold and drops below it by the amplitude of the overdrive voltage ($V_{TH} - V_{CC}$).

Valid Reset with V_{CC} under 1.0 V

To ensure that the CAT811 $\overline{\text{RESET}}$ pin is in a known state when V_{CC} is under 1.0 V, a 100 k Ω pull-down resistor between $\overline{\text{RESET}}$ pin and GND is recommended; the value is not critical. For the CAT812, a pull-up resistor from RESET pin to V_{CC} is needed.

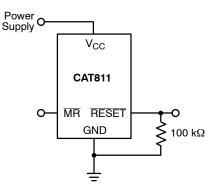


Figure 8. RESET Valid with V_{CC} Under 1.0 V

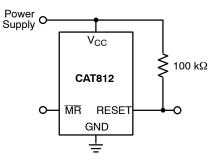
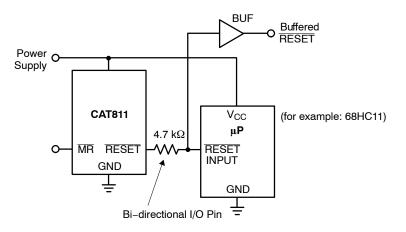


Figure 9. RESET Valid with V_{CC} Under 1.1 V

Bi-directional Reset Pin Interfacing

The CAT811/812 can interface with $\mu P/\mu C$ bi-directional reset pins by connecting a 4.7 k Ω resistor in series with the CAT811/812 reset output and the $\mu P/\mu C$ bi-directional reset pin.



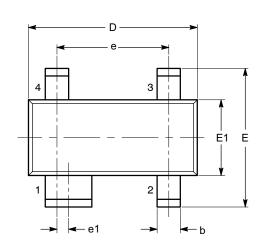
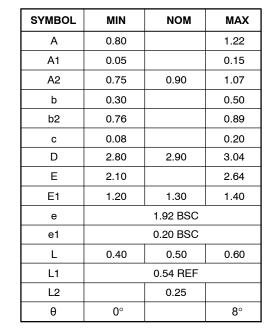
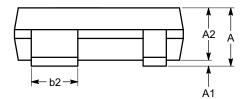
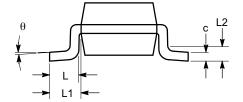

Figure 10. Bi-directional Reset Pin Interfacing

Table 5. OTHER SUPERVISORY PRODUCTS


Function	CAT1161/3	CAT1162	CAT809	CAT810	CAT811	CAT812
With 16k Bit Serial EEPROM Memory	~	~				
Watchdog Timer	~					
Manual Reset Input	~	~			>	~
Active Low Reset			~		>	
Active High Reset				~		~
Dual Polarity Reset Outputs	~	~				
Package	8-pin DIP and SOIC	8–pin DIP and SOIC	3-pin SOT-23 and SC70	3-pin SOT-23 and SC70	4–pin SOT–143	4–pin SOT–143


PACKAGE DIMENSIONS

SOT-143, 4 Lead CASE 527AF-01 ISSUE A



SIDE VIEW

All dimensions are in millimeters. Angles in degrees.
Complies with JEDEC TO-253.

END VIEW

ORDERING INFORMATION

Order Number			Top Mar	k (Note 4)				Quantity per Reel
NiPdAu	Matte-Tin	Voltage	NiPdAu	Matte-Tin	Output	Reset	Package	(Note 5)
CAT811LTBI-GT3	CAT811LTBI-T3	4.63 V	VEA	VES			DW SOT-143-4	3,000
CAT811MTBI-GT3	CAT811MTBI-T3	4.38 V	VEA	VES				
CAT811JTBI-GT3	CAT811JTBI-T3	4.00 V	VEA	VES				
CAT811TTBI-GT3	CAT811TTBI-T3	3.08 V	VEA	VES	Manual Reset	LOW		
CAT811STBI-GT3	CAT811STBI-T3	2.93 V	VEA	VES		501		
CAT811RTBI-GT3	CAT811RTBI-T3	2.63 V	VEA	VES				
CAT811ZTBI-GT3	CAT811ZTBI-T3	2.32 V	VEA	VES				
	• •							
CAT812LTBI-GT3	CAT812LTBI-T3	4.63 V	VTA	VTS				
CAT812MTBI-GT3	CAT812MTBI-T3	4.38 V	VTA	VTS			SOT-143-4	
CAT812JTBI-GT3	CAT812JTBI-T3	4.00 V	VTA	VTS				
CAT812TTBI-GT3	CAT812TTBI-T3	3.08 V	VTA	VTS	Manual Reset	Manual HIGH Reset		3,000
CAT812STBI-GT3	CAT812STBI-T3	2.93 V	VTA	VTS				
CAT812RTBI-GT3	CAT812RTBI-T3	2.63 V	VTA	VTS				
CAT812ZTBI-GT3	CAT812ZTBI-T3	2.32 V	VTA	VTS				

4. Threshold and full part numbers will be provided on box and reel labels as well as all Shipping documents.

5. For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

6. For detailed information and a breakdown of device nomenclature and numbering systems, please see the ON Semiconductor Device Nomenclature document, TND310/D, available at www.onsemi.com

ON Semiconductor and images are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer applications by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the SCILLC product cate a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons, and reasonable attorney fees and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local

Sales Representative

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050