

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics				,	•
Collector-emitter breakdown voltage	V _{(BR)CEO}	15	-	-	V
$I_{\rm C} = 1 \text{ mA}, I_{\rm B} = 0$, ,				
Collector-emitter cutoff current	I _{CES}	-	-	100	μA
$V_{CE} = 20 \text{ V}, \ V_{BE} = 0$					
Collector-base cutoff current	I _{CBO}	-	-	100	nA
$V_{CB} = 10 \text{ V}, I_{E} = 0$					
Emitter-base cutoff current	I _{EBO}	-	-	1	μA
$V_{\text{EB}} = 1 \text{ V}, I_{\text{C}} = 0$					
DC current gain-	h _{FE}	20	40	70	-
$I_{\rm C}$ = 15 mA, $V_{\rm CE}$ = 8 V, pulse measured					

2

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol		Values		Unit
		min.	typ.	max.	
AC Characteristics (verified by random sam	pling)		1	1	
Transition frequency	f_{T}	3.5	5	-	GHz
$I_{\rm C}$ = 15 mA, $V_{\rm CE}$ = 8 V, f = 500 MHz					
Collector-base capacitance	C_{cb}	-	0.56	0.9	pF
$V_{CB} = 10 \text{ V}, f = 1 \text{ MHz}, V_{BE} = 0,$					
emitter grounded					
Collector emitter capacitance	$C_{ m ce}$	-	0.35	-	
$V_{CE} = 10 \text{ V}, f = 1 \text{ MHz}, V_{BE} = 0$,					
base grounded					
Emitter-base capacitance	C_{eb}	-	0.7	-	
$V_{EB} = 0.5 \text{ V}, f = 1 \text{ MHz}, V_{CB} = 0$,					
collector grounded					
Noise figure	F				dB
$I_{C} = 2 \text{ mA}, \ V_{CE} = 8 \text{ V}, \ Z_{S} = Z_{Sopt},$					
f = 900 MHz		-	2	-	
$I_{\text{C}} = 2 \text{ mA}, V_{\text{CE}} = 8 \text{ V}, Z_{\text{S}} = Z_{\text{Sopt}}$,					
f = 1.8 GHz		-	3	-	
Power gain, maximum available ¹⁾	G _{ma}				
$I_{C} = 15 \text{ mA}, V_{CE} = 8 \text{ V}, Z_{S} = Z_{Sopt}$,					
$Z_{L} = Z_{Lopt}$, $f = 900 \text{ MHz}$		-	13.5	-	
$I_{C} = 15 \text{ mA}, V_{CE} = 8 \text{ V}, Z_{S} = Z_{Sopt}$,					
$Z_{L} = Z_{Lopt}$, $f = 1.8 \text{ GHz}$		-	8	-	
Transducer gain	S _{21e} ²				dB
$I_{\rm C}$ = 15 mA, $V_{\rm CE}$ = 8 V, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω ,					
f = 900 MHz		-	11.5	-	
$I_{\rm C}$ = 15 mA, $V_{\rm CE}$ = 8 V, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω ,					
f = 1.8 GHz		-	6	-	

 $^{{}^{1}}G_{ma} = |S_{21} / S_{12}| (k-(k^2-1)^{1/2})$

SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):

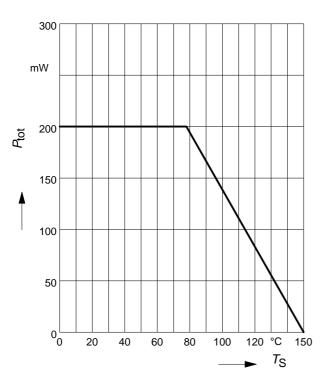
Transitor Chip Data:

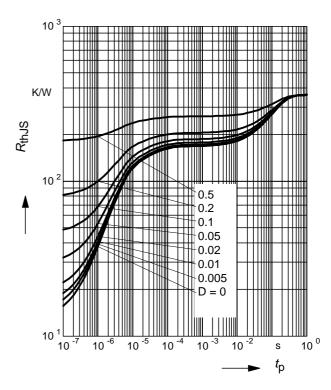
4.5354	fA	BF =	98.533	-	NF =	0.90551	-
10.983	V	IKF =	0.016123	Α	ISE =	12.196	fA
1.1172	-	BR =	10.297	-	NR =	1.2703	-
47.577	V	IKR =	0.019729	Α	ISC =	0.024709	fA
1.206	-	RB =	7.9562	Ω	IRB =	0.79584	mΑ
1.5939	Ω	RE =	1.5119	-	RC =	0.66749	Ω
1.7785	fF	VJE =	0.79082	V	MJE =	0.32167	-
32.171	ps	XTF =	0.30227	-	VTF =	0.21451	V
0.013277	mA	PTF =	0	deg	CJC =	922.07	fF
1.2	V	MJC =	0.3	-	XCJC =	0.3	-
2.0779	ns	CJS =	0	fF	VJS =	0.75	V
0	-	NK =	0	-	EG =	1.11	eV
3	-	FC =	0.75167		TNOM	300	K
	10.983 1.1172 47.577 1.206 1.5939 1.7785 32.171 0.013277 1.2 2.0779 0	$\begin{array}{ccccc} 10.983 & V \\ 1.1172 & - \\ 47.577 & V \\ 1.206 & - \\ 1.5939 & \Omega \\ 1.7785 & \text{fF} \\ 32.171 & \text{ps} \\ 0.013277 & \text{mA} \\ 1.2 & V \\ 2.0779 & \text{ns} \\ 0 & - \\ \end{array}$	10.983 V IKF = 1.1172 - BR = 47.577 V IKR = 1.206 - RB = 1.5939 Ω RE = 1.7785 fF VJE = 32.171 ps XTF = 0.013277 mA PTF = 1.2 V MJC = 2.0779 ns CJS = 0 - NK =	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.983VIKF =0.016123A1.1172-BR =10.297-47.577VIKR =0.019729A1.206-RB =7.9562 Ω 1.5939 Ω RE =1.5119-1.7785fFVJE =0.79082V32.171psXTF =0.30227-0.013277mAPTF =0deg1.2VMJC =0.3-2.0779nsCJS =0fF0-NK =0-	10.983 V IKF = 0.016123 A ISE = 1.1172 - BR = 10.297 - NR = 47.577 V IKR = 0.019729 A ISC = 1.206 - RB = 7.9562 Ω IRB = 1.5939 Ω RE = 1.5119 - RC = 1.7785 fF VJE = 0.79082 V MJE = 32.171 ps XTF = 0.30227 - VTF = 0.013277 mA PTF = 0 deg CJC = 1.2 V MJC = 0.3 - XCJC = 2.0779 ns CJS = 0 fF VJS = 0 - NK = 0 - EG =	10.983VIKF =0.016123AISE =12.1961.1172-BR =10.297-NR =1.270347.577VIKR =0.019729AISC =0.0247091.206-RB =7.9562 Ω IRB =0.795841.5939 Ω RE =1.5119-RC =0.667491.7785fFVJE =0.79082VMJE =0.3216732.171psXTF =0.30227-VTF =0.214510.013277mAPTF =0degCJC =922.071.2VMJC =0.3-XCJC =0.32.0779nsCJS =0fFVJS =0.750-NK =0-EG =1.11

All parameters are ready to use, no scalling is necessary. Extracted on behalf of Infineon Technologies AG by: Institut für Mobil- und Satellitentechnik (IMST)

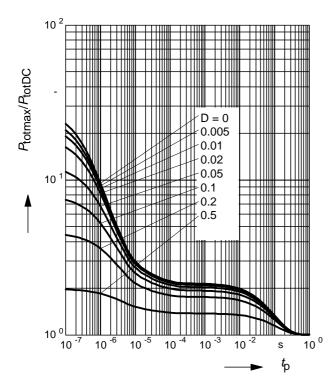
4

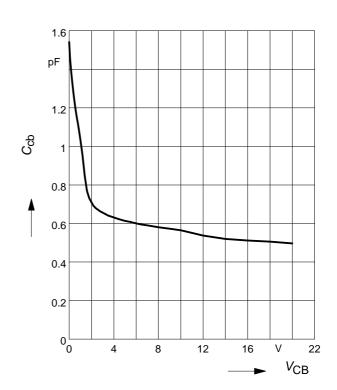
Package Equivalent Circuit:


0.84 nΗ 0.51 $L_{\mathsf{BO}} =$ nΗ 0.69 nΗ 0.61 nΗ $L_{CI} =$ 0 nΗ $L_{CO} =$ 0.49 nΗ $C_{\mathsf{BE}} =$ fF $C_{CB} =$ 84 fF 165 $C_{CE} =$ fF Valid up to 6GHz


For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http://www.infineon.com/silicondiscretes

Total power dissipation $P_{tot} = f(T_S)$

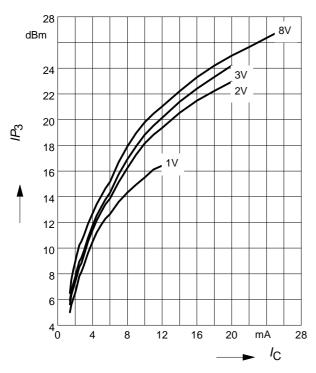

Permissible Pulse Load $R_{thJS} = f(t_p)$



Permissible Pulse Load

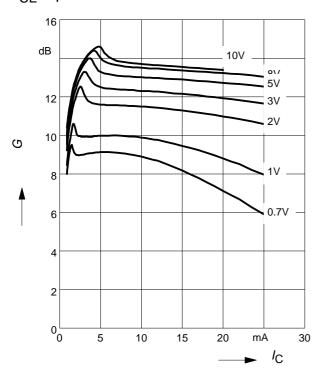
 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{p})$

Collector-base capacitance C_{cb} = $f(V_{CB})$ f = 1MHz

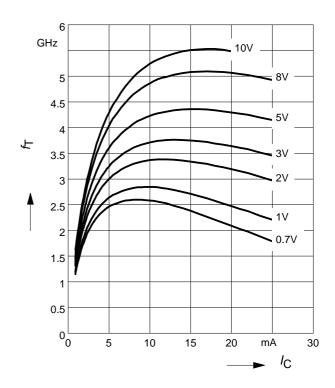


Third order Intercept Point $IP_3=f(I_C)$

(3rd order, Output, $Z_S = Z_L = 50 \Omega$)


 V_{CE} = parameter, f = 900MHz

Power gain G_{ma} , $G_{ms} = f(I_C)$


f = 0.9GHz

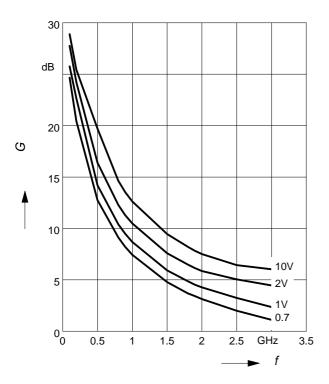
 V_{CE} = parameter

Transition frequency $f_T = f(I_C)$

 V_{CE} = parameter

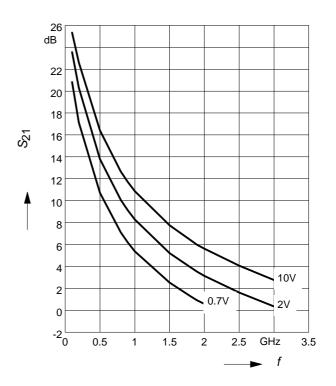
Power gain G_{ma} , $G_{ms} = f(I_C)$

f = 1.8 GHz


 V_{CE} = parameter

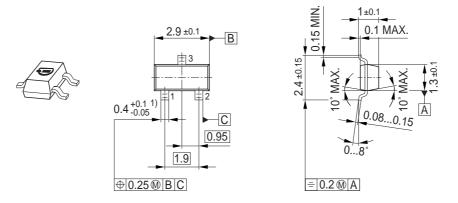

Power Gain G_{ma} , $G_{ms} = f(t)$

 V_{CE} = parameter, I_{C} = 15 mA

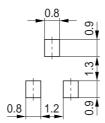

Power Gain G_{ma} , $G_{ms} = f(V_{CE})$: —— $|S_{21}|^2 = f(V_{CE})$: - - - -

 $f = \text{parameter}, I_{\text{C}} = 15 \text{ mA}$

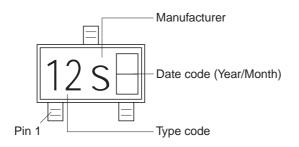
Power Gain $|S_{21}|^2 = f(f)$

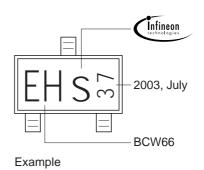

 V_{CE} = parameter, I_{C} = 15 mA

7

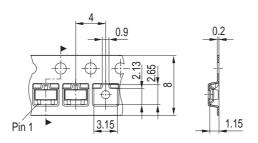


Package Outline




1) Lead width can be 0.6 max. in dambar area

Foot Print


Marking Layout

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München © Infineon Technologies AG 2005. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.Infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

9