AZ809A # **Pin Configuration** Figure 2. Pin Configuration of AZ809A (Top View) # **Pin Description** | Pin Number | Pin Name | Function | |------------|----------|---| | 1 | GND | Ground pin | | 2 | RESET | Active low output. The \overline{RESET} is asserted LOW if V_{CC} falls below the reset threshold and remains LOW for the 240ms typical reset timeout period (140ms minimum) after V_{CC} exceeds the threshold | | 3 | VCC | Power supply input voltage (3.0V, 3.3V, 5.0V) | **AZ809A** # **Functional Block Diagram** Figure 3. Functional Block Diagram of AZ809A # **Ordering Information** | Package | Temperature
Range T | Reset | Part Number | | Marking ID | | Packing | | |---------|------------------------|-----------|---------------|---------------|------------|-------|-------------|--| | | | Threshold | Lead Free | Green | Lead Free | Green | Type | | | SOT-23 | -40 to 105°C | 4.63V | AZ809ANLTR-E1 | AZ809ANLTR-G1 | EH7 | GH7 | Tape & Reel | | | | | 2.93V | AZ809ANSTR-E1 | AZ809ANSTR-G1 | EH1 | GH1 | | | | | | 2.63V | AZ809ANRTR-E1 | AZ809ANRTR-G1 | ЕН6 | GH6 | | | BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green package. Oct. 2010 Rev. 1. 3 BCD Semiconductor Manufacturing Limited **AZ809A** ### **Absolute Maximum Ratings (Note 1)** | Parameter | Symbol | Value | Unit | |-------------------------------------|------------------|------------------------------|------| | Supply Voltage | V _{CC} | -0.3 to 6 | V | | RESET | | -0.3 to V _{CC} +0.3 | V | | Input Current, VCC Pin | | 20 | mA | | Output Current, RESET Pin | | 20 | mA | | Rate of Rise, V _{CC} | | 100 | V/µs | | Continuous Power Dissipation | | 320 | mW | | Junction Temperature | T_{J} | 150 | °C | | Storage Temperature | T _{STG} | -65 to 150 | °C | | Lead Temperature (Soldering, 10sec) | T_{LEAD} | 260 | °C | | ESD (Human Body Model) | | 6000 | V | | ESD (Machine Model) | | 400 | V | Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability. # **Recommended Operating Conditions** | Parameter | Symbol | Min | Max | Unit | |-------------------------------------|------------------|-----|-----|------| | Supply Voltage | V_{CC} | 1 | 5.5 | V | | Operating Ambient Temperature Range | $T_{\mathbf{A}}$ | -40 | 105 | °C | **AZ809A** #### **Electrical Characteristics** (V_{CC} is over the full voltage range, T_A =-40°C to 105°C, unless otherwise noted. Typical values at T_A =25°C, V_{CC} =5V for L device, V_{CC} =3.3V for S device and V_{CC} =3V for R device.)(Note 2) | Parameter | Symbol | Conditions | | Min | Тур | Max | Unit | |--|--|---|---|--------------------------|------|------|--------| | Input Voltage (V _{CC}) Range | ut Voltage (V_{CC}) Range V_{CC} $T_A=0^{\circ}C$ to $85^{\circ}C$ | | 1.0 | | 5.5 | V | | | | | T_A =-40°C to 105°C | | 1.2 | | 5.5 | Ī , , | | | I _{CC} | L Devices | T_A =-40°C to 85°C, V_{CC} <5.5V | | 7 | 11 | μА | | Supply Current | | | T_A =-40°C to 105°C, V_{CC} <5.5V | | | 12 | | | Supply Current | | R/S Devices | T_A =-40°C to 85°C, V_{CC} <3.6V | | 6 | 10 | | | | | | T_A =-40°C to 105°C, V_{CC} <3.6V | | | 11 | | | | | | T _A =25°C | 4.56 | 4.63 | 4.70 | V | | | | L Devices | T_{A} =-40°C to 85°C | 4.50 | | 4.75 | | | | V_{TH} | | $T_A = -40^{\circ} \text{C to } 105^{\circ} \text{C}$ | 4.40 | | 4.86 | | | | | S Devices | $T_A=25^{\circ}C$ | 2.89 | 2.93 | 2.96 | | | Reset Threshold | | | T_A =-40°C to 85°C | 2.85 | | 3.00 | | | | | | $T_A = -40^{\circ} \text{C to } 105^{\circ} \text{C}$ | 2.78 | | 3.08 | | | | | R Devices | T _A =25°C | 2.59 | 2.63 | 2.66 | | | | | | $T_A = -40^{\circ} \text{C to } 85^{\circ} \text{C}$ | 2.55 | | 2.70 | | | | | | T_A =-40°C to 105°C | 2.50 | | 2.76 | | | Reset Threshold
Temperature Coefficient | | T _A =-40°C to 105°C | | | 30 | | ppm/°C | | VCC to Reset Delay | | V _{CC} =V _{TH} to V _{TH} -100mV | | | 20 | | μs | | Reset Active Timeout Period | | $T_A = -40^{\circ} \text{C to}$ | 85°C | 140 | 240 | 560 | me | | Reset Active Timeout Feriod | | $T_A = -40^{\circ} \text{C to } 105^{\circ} \text{C}$ | | 100 | | 840 | ms | | | t Voltage V _{OL} | R/S Devices V _{CC} =V _{TH} (min), I _{SINK} =1.2mA | | | 0.3 | | | | Low RESET Output Voltage | | L Devices | V _{CC} =V _{TH} (min), I _{SINK} =3.2mA | | 0.4 | | V | | Low reader output volume | | V _{CC} >1.1V, I _{SINK} =50μA | | | 0.3 | | 1 | | | age V _{OH} | R/S Devices V _{CC} >V _{TH} (max),
I _{SOURCE} =500μA | | 0.8V _{CC} | | | | | High RESET Output Voltage | | L Devices | V _{CC} >V _{TH} (max),
I _{SOURCE} =800μA | V _{CC} -
1.5 | | | V | Note 2. Production testing done at T_A=25°C. Over temperature specifications guaranteed by design only. ### **Typical Performance Characteristics** 340 Power-up Reset Timeout Period (ms) 320 300 280 240 220 -40.0 -20.0 0.0 20.0 60.0 80.0 100.0 40.0 Temperature (°C) Figure 4. Supply Current vs. Temperature Figure 5. Power-up Reset Timeout vs. Temperature Figure 6. Power-down Reset Delay vs. Temperature Figure 7. Normalized Reset Threshold vs. Temperature **AZ809A** ### **Typical Performance Characteristics (Continued)** Figure 8. Maximum Transient Duration NOT Causing a Reset Pulse vs. Reset Comparator Overdrive Figure 9. Maximum Transient Duration NOT Causing a Reset Pulse vs. Reset Comparator Overdrive Figure 10. Maximum Transient Duration NOT Causing a Reset Pulse vs. Reset Comparator Overdrive ### **Operating Diagram** The AZ809A asserts a reset signal LOW whenever the VCC supply voltage is below the threshold voltage and remains asserted for 240ms typically after the VCC has risen above the threshold. Figure 11. Reset Timing Diagram of AZ809A # **Application Information** # Valid RESET with V_{CC} under 1.0 V The AZ809A $\overline{\text{RESET}}$ output is valid to V_{CC} =1.0V. Below this voltage, the output becomes an open circuit and doesn't sink current. Therefore, high-impedance CMOS logic input connected to RESET can drift to undetermined voltages. To ensure that the AZ809A RESET is in a known state when V_{CC} is under 1.0V, a 100K Ω pull-down resistor between the RESET pin and GND is recommended to discharge stray capacitances and maintain the output low. Figure 12. $\overline{\text{RESET}}$ Valid to V_{CC} =0V Oct. 2010 Rev. 1. 3 BCD Semiconductor Manufacturing Limited #### **AZ809A** #### **Application Information (Continued)** #### **Negative Going V_{CC} Transient** The AZ809A is optimized to immune fast negative-going transients or glitches on the V_{CC} line, and the sensitivity depends on the duration of the transient and the magnitude of the undershoot below the reset threshold (reset comparator overdrive). Figure 13 shows the maximum pulse width of a negative-going V_{CC} transient that will not cause a reset pulse. As the magnitude of the transient increases (goes farther below the reset threshold), the maximum allowable pulse width decreases. Any combination of duration and overdrive that lies under the curve will not generate a reset signal, typically, a V_{CC} transient that goes 100 mV below the reset threshold and lasts about $20 \mu \text{s}$ or less will not cause a reset pulse. A $0.1\mu F$ bypass capacitor mounted as close as possible to the V_{CC} pin will provide additional transient rejection. Figure 13. Maximum Transient Duration NOT Causing a Reset Pulse vs. Reset Comparator Overdrive ### **Typical Application** Figure 14. Typical Application of AZ809A Oct. 2010 Rev. 1. 3 BCD Semiconductor Manufacturing Limited **AZ809A** # **Mechanical Dimensions** SOT-23 Unit: mm(inch) ### **BCD Semiconductor Manufacturing Limited** http://www.bcdsemi.com #### IMPORTANT NOTICE BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others. #### MAIN SITE - Headquarters BCD Semiconductor Manufacturing Limited No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277 #### REGIONAL SALES OFFICE Shenzhen Office Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen, China Tel: +86-755-8826 7951 Tel: +86-755-8826 7951 Fax: +86-755-8826 7865 - Wafer Fab Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008 Taiwan Office BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei, Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806 USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788