

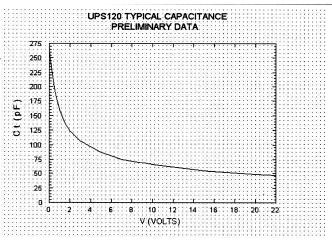

# **UPS120e3**

## 1.0 A Schottky Barrier Rectifier

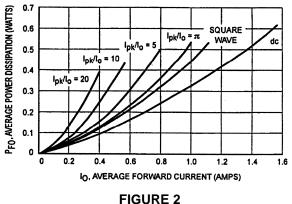
| Parameter                                         | Symbol         | Conditions                                                                 | T <sub>J</sub> = 25°C | T <sub>J</sub> =85⁰C  | Units |
|---------------------------------------------------|----------------|----------------------------------------------------------------------------|-----------------------|-----------------------|-------|
| Maximum Forward Voltage (Note 1)<br>See Figure 2  | V <sub>F</sub> | I <sub>F</sub> = 0.1 A<br>I <sub>F</sub> = 1.0 A<br>I <sub>F</sub> = 3.0 A | 0.34<br>0.45<br>0.65  | 0.25<br>0.415<br>0.67 | V     |
| Maximum Instantaneous Reverse<br>Current (Note 1) | I <sub>R</sub> | V <sub>R</sub> = 20 V<br>V <sub>R</sub> = 10 V                             | 0.40<br>0.10          | 25<br>18              | mA    |

Note: 1 Short duration test pulse used to minimize self - heating effect.




.050 -




# UPS120e3

### 1.0 A Schottky Barrier Rectifier

#### **CHARTS AND GRAPHS**



**FIGURE 1** 

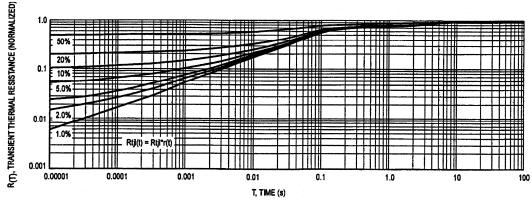


Forward Power Dissipation

\* Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of  $T_J$  therefore must include forward and reverse power effects. The allowable operating  $T_J$  may be calculated from the equation:

 $T_J = T_{J max} = r(t)(Pf+Pr)$  where r(t) = thermal impedance under given conditions. Pf = forward power dissipation, and Pr = reverse power dissipation

This graph displays the derated allowable  $T_J$  due to reverse bias under DC conditions only and is calculated as  $T_J = T_{J \text{ max}} r(t) Pr$ , Where r(t)=Rthja. For other power applications further calculations must be performed.


Downloaded from Arrow.com.

Microsemi



## UPS120e3

## 1.0 A Schottky Barrier Rectifier





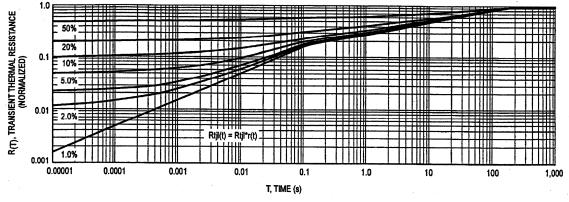



FIGURE 4 – Thermal Impedance Junction to Ambient