Low-Power, Single/Dual-Voltage Window Detectors

Absolute Maximum Ratings

(Voltages with respect to GND.)

V _{CC} , V _{CC2} ,0.3V to +6.5V
SET, OVLATCH, MR, UVIN, OVIN0.3V to (V _{CC} + 0.3V)
UV, RESET, OV (open drain)0.3V to +6.5V
RESET, OV, UV, UV, RESET (push-pull)0.3V to (V _{CC} + 0.3V)
Input/Output Current (all pins)
Continuous Power Dissipation ($T_A = +70^{\circ}C$)

5-Pin SOT23-5 (derate 7.1mW/°C above $T_A = +70^{\circ}C$)... 571mW 6-Pin SOT23-6 (derate 8.7mW/°C above $T_A = +70^{\circ}C$)... 696mW 8-Pin TDFN (derate 24.4mW/°C above $T_A = +70^{\circ}C$).... 1951mW

Operating Temperature Range	40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	
Lead(Pb)-Free Package	+260°C
Containing Lead(Pb)	+240°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

(V_{CC} = 1.0V to 6.0V, V_{CC2} = 0 to 6.0V (MAX6760–MAX6762), $T_A = -40^{\circ}C$ to +125°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL		MIN	TYP	MAX	UNITS		
POWER REQUIREMENTS					•			
		(Note 2)			1.0		6.0	
Operating Voltage Range	V _{CC}		MAX6760TAAA/MAX6761TAAA/ MAX6762TAAA/MAX6763/MAX6764UT-T				6.0	V
		V _{CC} = 3.6V, M	AX6754–M	AX6759, no load		13	30	
M. Currente Course at		V _{CC} = 3.6V, M	AX6763/M/	AX6764, no load		10	23	
V _{CC} Supply Current	Icc	V _{CC} = 3.6V, V _C MAX6760/MAX	00 00-			13	30	μA
V _{CC2} Supply Current		V _{CC2} = 1.8V, \ MAX6760/MAX				1	1.5	μA
Adjustable Bias Current	- I _{CC2}	V _{CC2} (MAX676 (Note 3)	V _{CC2} (MAX6760–MAX6762TA_AD_) (Note 3)				+20	nA
V _{CC} THRESHOLD								
				$V_{SET} = V_{SB}$	5.750	5.875	6.000	- - - - -
			L, 5V T, 3.3V	SET = V_{CC}	5.500	5.625	5.750	
				SET = GND	5.250	5.375	5.500	
				$V_{SET} = V_{SB}$	3.795	3.878	3.960	
				SET = V_{CC}	3.630	3.713	3.795	
				SET = GND	3.465	3.548	3.630	
		$T_A = -40^{\circ}C$ to		V _{SET} = V _{SB}	3.450	3.525	3.600	
V _{CC} Overvoltage Threshold	OV _{TH}	+125°C, rising	R, 3.0V	SET = V _{CC}	3.300	3.375	3.450	
		V _{CC}		SET = GND	3.150	3.225	3.300	
				V _{SET} = V _{SB}	2.875	2.938	3.000	
			Z, 2.5V	SET = V _{CC}	2.750	2.813	2.875	-
				SET = GND	2.625	2.688	2.750	
				V _{SET} = V _{SB}	2.070	2.115	2.160	
			W, 1.8V	SET = V _{CC}	1.980	2.025	2.070	
				SET = GND	1.890	1.935	1.980	

Low-Power, Single/Dual-Voltage Window Detectors

Electrical Characteristics (continued)

PARAMETER	SYMBOL		CON	DITIONS	MIN	TYP	MAX	UNITS
				V _{SET} = V _{SB}	4.000	4.125	4.250	
			L, 5V	SET = V _{CC}	4.250	4.375	4.500	-
				SET = GND	4.500	4.625	4.750	
				V _{SET} = V _{SB}	2.640	2.723	2.805	
			T, 3.3V	SET = V _{CC}	2.805	2.888	2.970	
				SET = GND	2.970	3.053	3.135	
		T _A = -40°C		V _{SET} = V _{SB}	2.400	2.475	2.550	
V _{CC} Undervoltage Threshold	UV _{TH}	to +125°C,	R, 3.0V	SET = V _{CC}	2.550	2.625	2.700	V
		falling V _{CC}		SET = GND	2.700	2.775	2.850	
				V _{SET} = V _{SB}	2.000	2.063	2.125	
			Z, 2.5V	SET = V _{CC}	2.125	2.188	2.250	
				SET = GND	2.250	2.313	2.375	
				V _{SET} = V _{SB}	1.440	1.485	1.530	
			W, 1.8V	SET = V _{CC}	1.530	1.575	1.620	
				SET = GND	1.620	1.665	1.710	
				V _{SET} = V _{SB}	3.795	3.878	3.960	
			T, 3.3V R, 3.0V Z, 2.5V	SET = V _{CC}	3.630	3.713	3.795	
				SET = GND	3.465	3.548	3.630	
				V _{SET} = V _{SB}	3.450	3.525	3.600	
				SET = V _{CC}	3.300	3.375	3.450	
				SET = GND	3.150	3.225	3.300	
				V _{SET} = V _{SB}	2.875	2.938	3.000	
				SET = V _{CC}	2.750	2.813	2.875	
				SET = GND	2.625	2.688	2.750	
				V _{SET} = V _{SB}	2.070	2.115	2.160	
			W, 1.8V	SET = V _{CC}	1.980	2.025	2.070	
		$T_{A} = -40^{\circ}C$		SET = GND	1.890	1.935	1.980	v
V _{CC2} Overvoltage Threshold	OV _{TH2}	to +125°C, rising V _{CC2}		V _{SET} = V _{SB} (Note 2)	1.725	1.763	1.800	v
			l, 1.5V	SET = V _{CC} (Note 2)	1.650	1.688	1.725	1
				SET = GND (Note 2)	1.575	1.613	1.650	
				V _{SET} = V _{SB} (Note 2)	1.380	1.410	1.440	
			G, 1.2V	SET = V _{CC} (Note 2)	1.320	1.350	1.380	
				SET = GND (Note 2)	1.260	1.290	1.320	
				V _{SET} = V _{SB} (Note 2)	1.035	1.058	1.080	
			E, 0.9V	SET = V _{CC} (Note 2)	0.990	1.013	1.035	
				SET = GND (Note 2)	0.945	0.968	0.990	
				V _{SET} = V _{SB}	0.489	0.500	0.511	
			ADJ	SET = V _{CC}	0.468	0.479	0.489	
				SET = GND	0.447	0.457	0.468	

Low-Power, Single/Dual-Voltage Window Detectors

Electrical Characteristics (continued)

PARAMETER	SYMBOL		CONI	DITIONS	MIN	ТҮР	MAX	UNITS
				V _{SET} = V _{SB}	2.640	2.723	2.805	
			T, 3.3V	SET = V _{CC}	2.805	2.888	2.970	
				SET = GND	2.970	3.053	3.135	
				V _{SET} = V _{SB}	2.400	2.475	2.550	
			R, 3.0V	SET = V _{CC}	2.550	2.625	2.700	
				SET = GND	2.700	2.775	2.850	
				V _{SET} = V _{SB}	2.000	2.063	2.125	
			Z, 2.5V	SET = V _{CC}	2.125	2.188	2.250	
				SET = GND	2.250	2.313	2.375	
				V _{SET} = V _{SB}	1.440	1.485	1.530	
		T _A = -40°C	W, 1.8V	SET = V _{CC}	1.530	1.575	1.620	
V _{CC2} Undervoltage Threshold	UV _{TH2}	to +125°C, falling V _{CC2}		SET = GND	1.620	1.665	1.710	V
			I, 1.5V G, 1.2V	V _{SET} = V _{SB} (Note 2)	1.200	1.238	1.275	
				SET = V _{CC} (Note 2)	1.275	1.313	1.350	
				SET = GND (Note 2)	1.350	1.388	1.425	
				V _{SET} = V _{SB} (Note 2)	0.960	0.990	1.020	
				SET = V _{CC} (Note 2)	1.020	1.050	1.080	
				SET = GND (Note 2)	1.080	1.110	1.140	
				V _{SET} = V _{SB} (Note 2)	0.720	0.743	0.765	
			E, 0.9V	SET = V _{CC} (Note 2)	0.765	0.788	0.810	
				SET = GND (Note 2)	0.810	0.833	0.855	
				V _{SET} = V _{SB}	0.340	0.351	0.362	
			ADJ	SET = V _{CC}	0.362	0.372	0.383	
				SET = GND	0.383	0.394	0.404	
Threshold Hysteresis	V _{HYST}	V _{CC} , V _{CC2}				0.7		%
UNDERVOLTAGE/OVERVOLTA	GE INPUTS	(UVIN, OVIN) (MAX67	63/MAX6764)				
UVIN, OVIN Threshold Voltage	V _{TH-IN}				0.485	0.5	0.515	V
UVIN, OVIN Input Bias Current	I _{IN}	(Note 3)			-20		+20	nA
UVIN, OVIN Threshold Hysteresis	V _{HYST}					0.7		%

Low-Power, Single/Dual-Voltage Window Detectors

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONI	MIN	TYP	MAX	UNITS	
TIMING CHARACTERISTICS							
	4	Liguro 7	D0		20		μs
Reset and UV Timeout Period	t _{RP}	Figure 7	D3	100	185	320	ms
V _{CC} to Reset Delay	t _{D-RESET}	V _{CC} /V _{CC2} falling at 10 UV _{TH} + 100mV to UV _T			20		μs
V _{CC} to UV Delay	t _{D-UV}	V _{CC} /V _{CC2} rising at 10 OV _{TH} - 100mV to OV _T			20		μs
V _{CC} to OV Delay	t _{D-OV}	V_{CC}/V_{CC2} rising at 10 OV _{TH} - 100mV to OV _T (MAX6757–MAX6762	H + 100mV		20		μs
UVIN to UV Delay		(MAX6763/MAX6764)			20		μs
OVIN to OV Delay		(MAX6763/MAX6764)			20		μs
Startup Delay Time	t _{START}	D0 options only, OV ou	utput (Note 4)		2		ms
THRESHOLD WINDOW SELE	CT INPUT (SE	ET)					
Input-Voltage Low				0		0.1	V
		V _{CC} = 1.4V		0.65		0.75	v
Input Bias Voltage (Note 5)	V _{SB}	V _{CC} = 3.0V		0.81		2.19	
(Note 3)		V _{CC} = 6.0V		1.10		4.90	
Input-Voltage High				V _{CC} - 0.1		V _{CC}	V
Input Current	I _{SET}			-1		+1	μA
MANUAL RESET (MR)							
Input-Voltage Low						0.23 x V _{CC}	V
Input-Voltage High				0.6 x V _{CC}			V
Pullup Resistance to V_{CC}					26		kΩ
Minimum Pulse Width				4			μs
Transient Immunity					300		ns
	t _{D-MR}	MR falling, Figure 7			300		ns
Propagation Delay	ture e	MR rising, Figure 7	D0		40		115
	t _{MR_P}		D3	100	185	320	ms
OVERVOLTAGE OUTPUT LAT	CH CONTRO	L INPUT (OVLATCH)					
Input-Voltage Low						0.3 x V _{CC}	V
Input-Voltage High				0.7 x V _{CC}			V

Low-Power, Single/Dual-Voltage Window Detectors

Electrical Characteristics (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
nput Bias Current I _{OVLATCH}			-1		+1	μA	
RESET, RESET, UV, UV, OV	·	·	· · ·				
		Any $V_{CC} \ge 1.0V$, $I_{SINK} = 100\mu A$, output asserted			0.3		
		Any V _{CC} ≥ 1.2V, I _{SINK} = 200µA, output asserted			0.3		
RESET, UV Output Low (Open Drain or Push-Pull)	V _{OL}	Any $V_{CC} \ge 1.71V$, $I_{SINK} = 1.0mA$, output asserted			0.3	v	
		Any $V_{CC} \ge 2.85V$, $I_{SINK} = 2.0mA$, output asserted			0.3		
		Any $V_{CC} \ge 4.75$ V, $I_{SINK} = 4.0$ mA, output asserted			0.3		
		Any $V_{CC} \ge 1.71V$, $I_{SOURCE} = 0.8mA$, output deasserted	0.8 x V _{CC}				
RESET, UV Output High (Push-Pull)	V _{OH}	Any $V_{CC} \ge 2.85$ V, $I_{SOURCE} = 2.0$ mA, output deasserted	0.8 x V _{CC}			V	
		Any $V_{CC} \ge 4.75$ V, $I_{SOURCE} = 4.0$ mA, output deasserted					
		Any $V_{CC} \ge 1.71V$, $I_{SINK} = 1.0mA$, output deasserted			0.3		
RESET, UV Output Low (Push-Pull)	V _{OL}	Any $V_{CC} \ge 2.85V$, $I_{SINK} = 2.0mA$, output deasserted			0.3	V	
		Any $V_{CC} \ge 4.75$ V, $I_{SINK} = 4.0$ mA, output deasserted			0.3		
		Any $V_{CC} \ge 1.0V$, $I_{SOURCE} = 50\mu A$, output asserted	0.8 x V _{CC}				
		Any V _{CC} ≥1.2V, I _{SOURCE} = 100µA, output asserted	0.8 x V _{CC}				
RESET, UV Output High (Push-Pull)	V _{OH}	Any $V_{CC} \ge 1.71V$, $I_{SOURCE} = 0.8mA$,0.8 xoutput asserted V_{CC}				V	
		Any $V_{CC} \ge 2.85V$, $I_{SOURCE} = 2.0mA$, output asserted	0.8 x V _{CC}				
		Any $V_{CC} \ge 4.75$ V, $I_{SOURCE} = 4.0$ mA, output asserted	0.8 x V _{CC}				

Low-Power, Single/Dual-Voltage Window Detectors

Electrical Characteristics (continued)

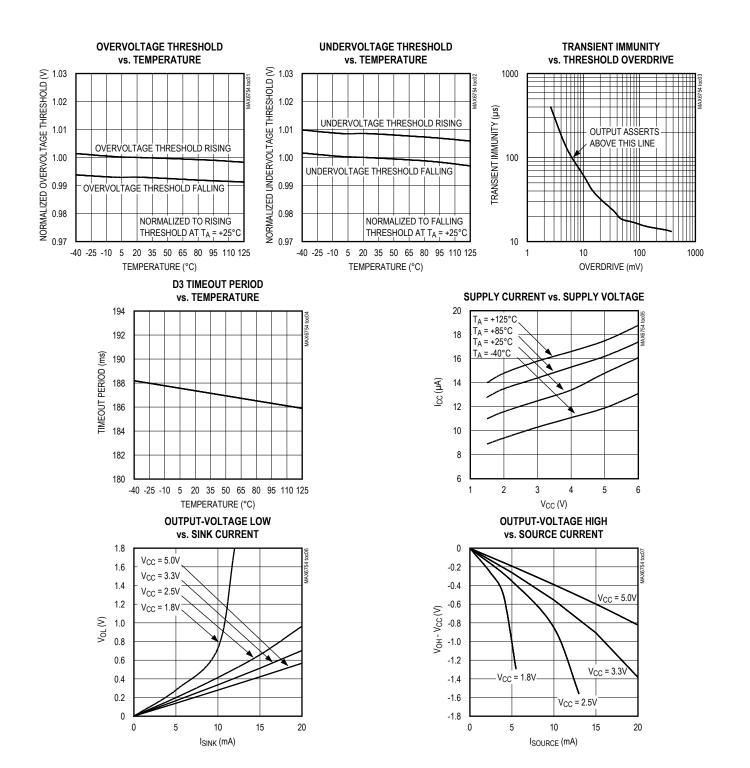
(V_{CC} = 1.0V to 6.0V, V_{CC2} = 0 to 6.0V (MAX6760–MAX6762), $T_A = -40^{\circ}C$ to +125°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		Any V _{CC} ≥ 1.98V, I _{SINK} = 1.4mA, output asserted			0.3	
OV Output Low		Any $V_{CC} \ge 2.75V$, $I_{SINK} = 2.0mA$, output asserted			0.3	
(Open-Drain or Push-Pull)	V _{OL}	Any V _{CC} ≥ 3.63V, I _{SINK} = 3.0mA, output asserted			0.3	
		Any V _{CC} ≥ 5.5V, I _{SINK} = 4.0mA, output asserted			0.3	
		Any $V_{CC} \ge 1.0V$, $I_{SOURCE} = 50\mu A$, output deasserted	0.8 x V _{CC}			
		Any $V_{CC} \ge 1.2V$, $I_{SOURCE} = 100\mu A$, output deasserted	0.8 x V _{CC}			
OV Output High		Any V _{CC} ≥ 1.98V, I _{SOURCE} = 1.4mA, output deasserted	0.8 x V _{CC}			
(Push-Pull)	V _{OH}	Any $V_{CC} \ge 2.75V$, $I_{SOURCE} = 2.0mA$, output deasserted	0.8 x V _{CC}			
		Any $V_{CC} \ge 3.63V$, $I_{SOURCE} = 3.0mA$, output deasserted	0.8 x V _{CC}			
		Any $V_{CC} \ge 5.5V$, $I_{SOURCE} = 4.5mA$, output deasserted	0.8 x V _{CC}			
RESET, UV, OV Output Open- Drain Leakage Current	ILKG	Output not asserted			1	μΑ

Note 1: Devices are production tested at +25°C. Overtemperature limits are guaranteed by design.

Note 2: Voltage monitoring requires that V_{CC} must be greater than or equal to 1.4V, but outputs remain asserted in the correct state for V_{CC} down to 1.0V.

Note 3: Guaranteed by design.


Note 4: For D0 window detector options and \overline{OV} outputs, startup delay time is the time required for the internal reference/circuitry to reach specified accuracy after the monitor is powered up from GND.

Note 5: The input bias voltage is based off of V_{CC} . The minimum value is given by the equation (0.1 x V_{CC} + 0.51)V and the maximum value is given by (0.9 x V_{CC} - 0.51)V.

Low-Power, Single/Dual-Voltage Window Detectors

Typical Operating Characteristics

(V_{CC} = 5V, V_{CC2} = 3.3V, T_A = $+25^{\circ}$ C, unless otherwise noted.)

Low-Power, Single/Dual-Voltage Window Detectors

Pin Description

PIN					
MAX6754/ MAX6755/ MAX6756	MAX6757/ MAX6758/ MAX6759	MAX6760/ MAX6761/ MAX6762	MAX6763/ MAX6764	NAME	FUNCTION
1	1	1	-	V _{CC}	Power Voltage Input. V_{CC} powers the device. V_{CC} is the monitored voltage.
_	—	—	1		Power Input. V _{CC} powers the device.
2	2	2	2	GND	Ground
3	3	8	_	MR	Active-Low Manual Reset Input. Drive $\overline{\text{MR}}$ low to assert undervoltage and reset outputs. The asserted output remains asserted for the specified propagation delay period after $\overline{\text{MR}}$ goes high. $\overline{\text{MR}}$ is internally pulled up to V _{CC} through a 26k Ω resistor.
4	_	_	_	RESET/ RESET	Reset Output. The Reset Output asserts when V _{CC} is below the selected UV _{TH} threshold or above the selected OV _{TH} threshold. Reset output deasserts after the specified timeout period after V _{CC} rises above the UV _{TH} threshold or drops below the OV _{TH} threshold. MAX6754: Active-low push-pull output (RESET). MAX6756: Active-high push-pull output (RESET).
5	6	4	_	SET	Threshold Window Select Input. SET configures the undervoltage and overvoltage window range for the internal detectors. Connect SET to GND for $\pm 5\%$ window, or to V _{CC} for $\pm 10\%$ window. Bias SET to V _{CC} /2 for a $\pm 15\%$ window.
_	4	6	_	UV/ UV	Undervoltage Output. UV/ $\overline{\rm UV}$ asserts when the monitored supply/ supplies are below the UV _{TH} thresholds or $\overline{\rm MR}$ is low. UV/ $\overline{\rm UV}$ deasserts after the specified timeout period when the monitored supply/supplies rise above the UV _{TH} thresholds or for the specified propagation delay after $\overline{\rm MR}$ goes high. MAX6757/MAX6760: Active-low push-pull output ($\overline{\rm UV}$). MAX6758/MAX6761: Active-high push-pull output ($\overline{\rm UV}$). MAX6759/MAX6762: Active-low open-drain output ($\overline{\rm UV}$).
	_	3	_	V _{CC2}	V_{CC2} Voltage Input. Input for the second window voltage monitor, and device output power supply when V_{CC2} > $V_{CC}.$
	5	5	5	ŌV	Active-Low Overvoltage Output. $\overline{\text{OV}}$ asserts low when the monitored supply/supplies are above their overvoltage threshold (OV_{TH}). $\overline{\text{OV}}$ goes high impedance immediately when the monitored supply/ supplies drop below OV_{TH} . There is no timeout delay period for the $\overline{\text{OV}}$ output. For MAX6763/MAX6764, $\overline{\text{OV}}$ is low when OVIN is above the internal 0.5V threshold. $\overline{\text{OV}}$ is high when OVIN is below the internal 0.5V threshold. MAX6757–MAX6762: Active-low open-drain output. MAX6763: Active-low push-pull output. MAX6764: Active-low open-drain output.

Low-Power, Single/Dual-Voltage Window Detectors

Pin Description (continued)

	PIN				PIN				
MAX6754/ MAX6755/ MAX6756	MAX6757/ MAX6758/ MAX6759	MAX6760/ MAX6761/ MAX6762	MAX6763/ MAX6764	NAME	FUNCTION				
		7	_	OVLATCH	Overvoltage Output Latch Control Input. Drive OVLATCH high to latch the overvoltage output for any V_{CC} or V_{CC2} overvoltage condition. Drive OVLATCH low to clear the latch after overvoltage conditions have been removed. The latch is transparent when OVLATCH is connected to GND. OVLATCH is a high-impedance input. Use external pullup or pulldown.				
_	_	_	3	UVIN	Undervoltage Input. $\overline{\text{UV}}$ is low when UVIN is below the internal 0.5V threshold. $\overline{\text{UV}}$ is high when UVIN is above the internal 0.5V threshold.				
_	_	_	4	ŪV	Undervoltage Output. $\overline{\text{UV}}$ is low when UVIN is below the internal 0.5V threshold. $\overline{\text{UV}}$ is high when UVIN is above the internal 0.5V threshold. There is no timeout delay period for the $\overline{\text{UV}}$ output.				
_	_	_	6	OVIN	Overvoltage Input. $\overline{\text{OV}}$ is low when OVIN is above the internal 0.5V threshold. $\overline{\text{OV}}$ is high when OVIN is below the internal 0.5V threshold.				
_	_	_	_	EP	Exposed Pad (TDFN Only). EP is internally connected to GND. Leave EP unconnected or connect to GND.				

Functional Diagrams

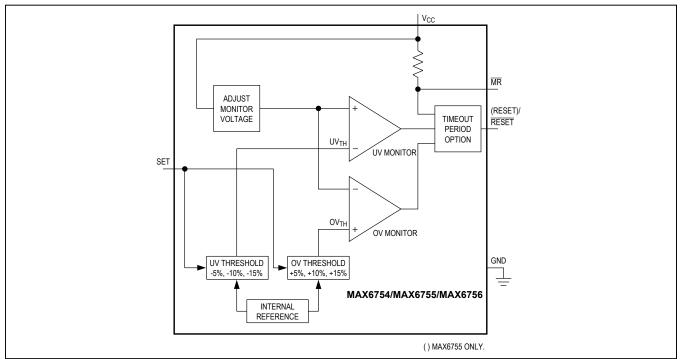


Figure 1. MAX6754/MAX6755/MAX6756 Functional Diagram

Low-Power, Single/Dual-Voltage Window Detectors

V_{CC} ADJUST MONITOR (UV)/ UV VOLTAGE TIMEOUT PERIOD OPTION UV_{TH} UV MONITOR SET MR Vcc — V ŌV OV_{TH} OV MONITOR UV THRESHOLD -5%, -10%, -15% OV THRESHOLD +5%, +10%, +15% GND Ŧ MAX6757/MAX6758/MAX6759 INTERNAL REFERENCE () MAX6758 ONLY.

Functional Diagrams (continued)

Figure 2. MAX6757/MAX6758/MAX6759 Functional Diagram

Low-Power, Single/Dual-Voltage Window Detectors

Functional Diagrams (continued)

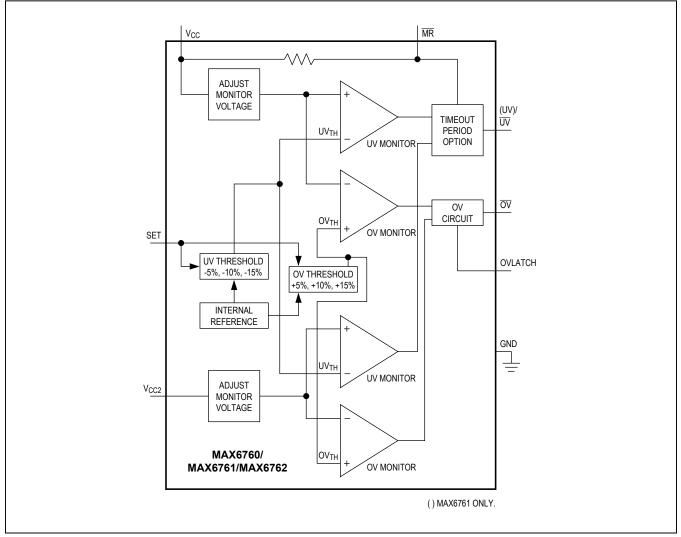


Figure 3. MAX6760/MAX6761/MAX6762 Functional Diagram

MAX6763/MAX6764 UVIN ŪV

Functional Diagrams (continued)

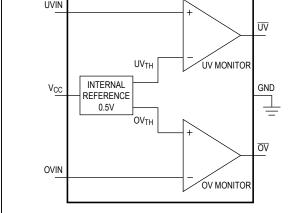


Figure 4. MAX6763/MAX6764 Functional Diagram

Detailed Description

The MAX6754-MAX6764 are low-power window voltage detectors capable of monitoring undervoltage and overvoltage conditions on system power supplies. Whenever a monitored voltage falls below its undervoltage threshold or exceeds its overvoltage threshold, these devices assert their outputs to notify the system (see Functional Diagrams).

The MAX6754/MAX6755/MAX6756 are single-voltage window detectors with internally fixed nominal voltage, externally adjustable set window, single reset undervoltage/ overvoltage output, and a manual reset input.

The MAX6757/MAX6758/MAX6759 are single-voltage window detectors with internally set nominal voltage, externally adjustable set window, separate undervoltage/ overvoltage outputs, and manual reset input.

The MAX6760/MAX6761/MAX6762 are dual-voltage window detectors with internally/externally set nominal voltages, externally adjustable set window, separate undervoltage/overvoltage outputs, manual reset input, and overvoltage latch functions.

The MAX6763/MAX6764 are single adjustable window detectors with separate under/overvoltage outputs.

Low-Power, Single/Dual-Voltage Window Detectors

The MAX6754-MAX6762 offer factory-fixed voltage thresholds for monitoring system voltages from 0.9V to 5V. The MAX6754-MAX6762 include a SET function to select the window voltage to ±5%, ±10%, or ±15%. The MAX6763/MAX6764 allow for externally adjustable upper and lower voltage thresholds to be set externally (down to 0.5V). The MAX6754-MAX6762 are available with two timing options (20µs propagation delay or 100ms minimum reset timeout).

Supply Voltages

V_{CC} is the power-supply input and the monitored voltage of the MAX6754-MAX6762. These devices feature a factory-trimmed V_{CC} and V_{CC2} divider that sets the nominal input range (see Table 1 and Table 2). V_{CC} for the MAX6763/MAX6764 is the power supply of the device and not the monitored voltage. For noisy systems, bypass V_{CC} and V_{CC2} each with a 0.1µF capacitor to GND.

Setting the Adjustable Nominal Voltage Threshold

The MAX6760/MAX6761/MAX6762 (versions with suffixes LA, TA, RA, ZA, WA, and AA) offer adjustable nominal voltage threshold to monitor V_{CC2}. Use an external voltage-divider to set the voltage at V_{CC2} to 0.4255V. Configure SET to select a monitor window of ±5%, ±10%, or ±15% (see Figure 5). The MAX6760/ MAX6761/MAX6762 suffix AA monitor only $V_{\mbox{CC2}}$ and do not monitor V_{CC}.

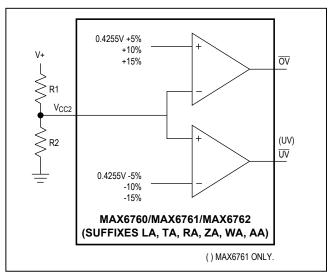


Figure 5. Setting the Threshold Voltage of V_{CC2}

Low-Power, Single/Dual-Voltage Window Detectors

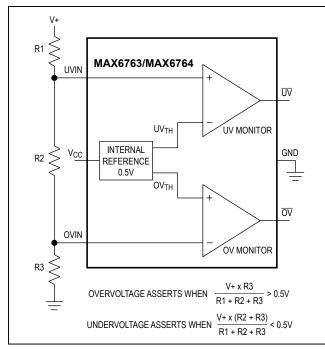


Figure 6. Setting the Under/Overvoltage Window

Choose R2 to have a resistance of up to $500k\Omega$. Calculate R1 by:

R1 = ((V+ - 0.4255V) x R2) / 0.4255V

The MAX6763/MAX6764 provide inputs to a window detector allowing the programming of the threshold voltage to within V_{CC} (see Figure 6).

Choose R1, R2, and R3 such that:

 $(V + / (R1 + R2 + R3)) \ge 1 \mu A$

SET

The MAX6754–MAX6762 allow the setting of the window voltage range of the voltage detector. Connect SET to GND to set a $\pm 5\%$ window. Connect SET to V_{CC} for a $\pm 10\%$ window. Bias SET to V_{CC} / 2 for a $\pm 15\%$ window.

Manual Reset (MR)

The MAX6754–MAX6762 include an active-low manual reset input. Drive $\overline{\text{MR}}$ low to assert a reset output (MAX6754/MAX6755/MAX6756) or an undervoltage output (MAX6757/MAX6758/MAX6759). The output remains asserted for the specified propagation delay time (see Figure 7a and Figure 7b) after $\overline{\text{MR}}$ goes high. $\overline{\text{MR}}$ is internally pulled to V_{CC} with a 26k Ω resistor.

Overvoltage Latch Control Input (OVLATCH)

The MAX6760/MAX6761/MAX6762 provide an overvoltage latch control input (OVLATCH). Drive OVLATCH high to latch the overvoltage output for any V_{CC} or V_{CC2} overvoltage condition. Drive OVLATCH low to clear the latch after overvoltage conditions have been removed. The latch is transparent when OVLATCH is connected to GND. OVLATCH is a high impedance input. Use external pullup or pulldown.

Reset, Undervoltage, and Overvoltage Outputs (RESET, RESET, UV, UV, OV)

RESET, $\overline{\text{RESET}}, \overline{\text{UV}}, \text{UV}$, and OV outputs assert when the monitored supply is below the selected UV_TH threshold or above the selected OV_TH threshold. The reset output deasserts after the specified timeout period when the monitored supply rises above the UV_TH threshold or drops below the OV_TH threshold. The push-pull versions are referenced to V_{CC}.

The MAX6760/MAX6761/MAX6762 monitor both V_{CC} and V_{CC2}. An undervoltage/overvoltage condition on either voltage supply asserts the corresponding output. RESET and UV are guaranteed to be in the correct logic state when V_{CC} or V_{CC2} > 1V.

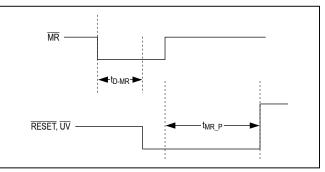


Figure 7a. Manual Reset/Reset Timing Diagram

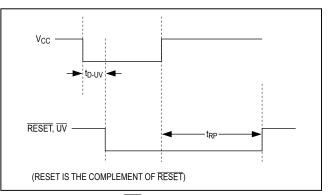


Figure 7b. V_{CC}/RESET, UV Timing Diagram

Low-Power, Single/Dual-Voltage Window Detectors

Applications Information

Microprocessor Monitoring

Figure 8 shows a microprocessor monitoring circuit. An overvoltage condition on either the core or I/O supply

turns the SCR on, blowing the fuse to disconnect the circuit from the power source. An optional capacitor (C1) on the gate of the SCR provides additional transient immunity against nuisance trips.

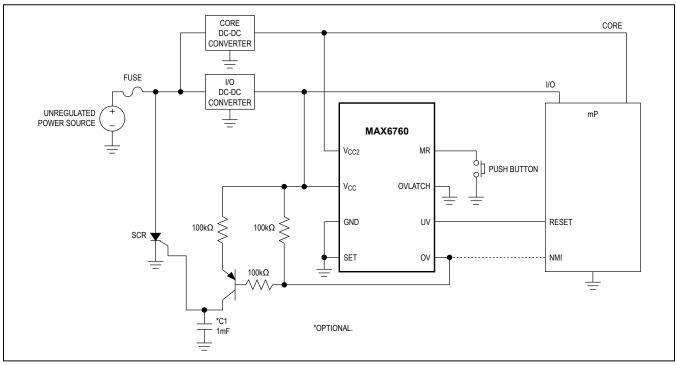


Figure 8. Microprocessor Monitoring

Selector Guide

	PUSH-PULL RESET	PUSH-PULL RESET	OPEN-DRAIN RESET	PUSH-PULL	PUSH-PULL UV	OPEN-DRAIN UV	PUSH-PULL	OPEN-DRAIN
MAX6754	Х	—	—	—	—	—	—	—
MAX6755	—	Х	—	—	—	_	—	—
MAX6756	—	—	Х	—	—	—	—	
MAX6757	—	—	—	Х	—	—		Х
MAX6758	—	—	—	—	Х	_	—	Х
MAX6759	—	—	—	—	—	Х	—	Х
MAX6760	—	—	—	Х	—	_		Х
MAX6761	—	—	—	—	X	_	—	Х
MAX6762	—	—	—	—	—	Х		Х
MAX6763	—	—	—	Х	—	—	Х	—
MAX6764	—	—	—	—	—	Х	—	Х

Low-Power, Single/Dual-Voltage Window Detectors

Table 1. Window Threshold VoltageSuffix Guide Single Fixed V_{CC}(MAX6754—MAX6759)

PART NO. SUFFIX	V _{CC} NOMINAL SYSTEM VOLTAGE (V)
L	5.0
Т	3.3
R	3.0
Z	2.5
W	1.8

Table 2. Window Threshold VoltageSuffix Guide Dual Fixed/Adjustable(MAX6760/MAX6761/MAX6762)

PART NO. SUFFIX	V _{CC} NOMINAL SYSTEM VOLTAGE (V)	V _{CC2} NOMINAL SYSTEM VOLTAGE (V)
LT	5	3.3
LR	5	3.0
LA	5	ADJ*
TZ	3.3	2.5
TW	3.3	1.8
TI	3.3	1.5
TG	3.3	1.2
TE	3.3	0.9
TA	3.3	ADJ*
RZ	3.0	2.5
RW	3.0	1.8
RI	3.0	1.5
RG	3.0	1.2
RE	3.0	0.9
RA	3.0	ADJ*
ZW	2.5	1.8
ZI	2.5	1.5
ZG	2.5	1.2
ZE	2.5	0.9
ZA	2.5	ADJ*
WI	1.8	1.5
WG	1.8	1.2
WE	1.8	0.9
WA	1.8	ADJ*
AA		ADJ*

*See the Setting the Adjustable Nominal Voltage Threshold section.

Table 3. Timeout Period Suffix Guide

TIMEOUT	ACTIVE TIMEOUT PERIOD		
PERIOD SUFFIX	MIN (ms)	Typ (ms)	MAX (ms)
D0	_	0.02	—
D3	100	185	320

Ordering Information (continued)

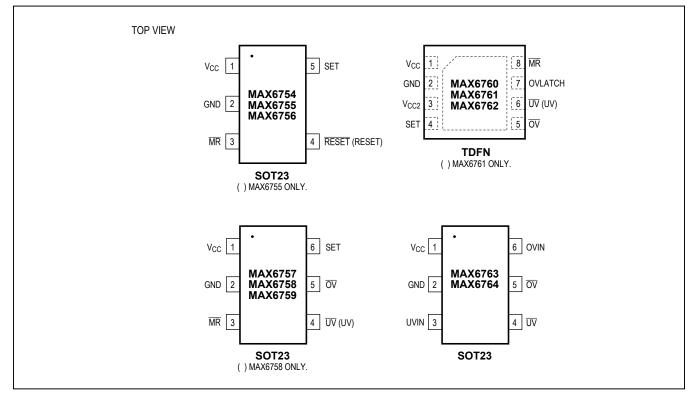
PART	TEMP RANGE	PIN-PACKAGE
MAX6759UT_D_/V-T	-40°C to +125°C	6 SOT23-6
MAX6760TADT	-40°C to +125°C	8 TDFN-EP
MAX6761TADT	-40°C to +125°C	8 TDFN-EP
MAX6762TADT	-40°C to +125°C	8 TDFN-EP
MAX6763UT-T	-40°C to +125°C	6 SOT23-6
MAX6764UT-T	-40°C to +125°C	6 SOT23-6

Insert the threshold level suffixes for V_{CC} and V_{CC2} (Tables 1 and 2) after UK, UT, or TA. For the MAX6754–MAX6759, insert only the V_{CC} threshold suffix after the UK or UT. Insert the reset timeout delay (Table 3) after D to complete the part number. For example, the MAX6760TALTD3-T provides a V_{CC} threshold of 5V, a V_{CC2} threshold of 3.3V, and a 100ms minimum reset timeout period. Sample stock is generally held on standard versions only (see the Standard Versions table). Standard versions have an order increment requirement of 2500 pieces. Nonstandard versions have an order increment requirement of 10,000 pieces. Contact factory for availability.

Devices are available in both leaded and lead-free packaging. Specify lead-free by replacing "-T" with "+T" when ordering.

/V denotes an automotive qualified part.

Low-Power, Single/Dual-Voltage Window Detectors


Standard Versions Table

PART	
MAX6754UKLD0	
MAX6754UKLD3	
MAX6754UKTD0	
MAX6754UKTD3	
MAX6754UKZD0	
MAX6754UKZD3	
MAX6754UKWD0	
MAX6754UKWD3	
MAX6755UKLD0	
MAX6755UKLD3	
MAX6755UKTD0	
MAX6755UKTD3	
MAX6755UKZD0	
MAX6755UKZD3	
MAX6755UKWD0	
MAX6755UKWD3	
MAX6756UKLD0	
MAX6756UKLD3	
MAX6756UKTD0	_
MAX6756UKTD3	_
MAX6756UKZD0	_
MAX6756UKZD3	_
MAX6756UKWD0	_
MAX6756UKWD3	_
MAX6757UTTD0	_
MAX6757UTTD3	
MAX6757UTLD0	_
MAX6757UTLD3	_
MAX6757UTZD0	_
MAX6757UTZD3	
MAX6757UTWD0	_
MAX6757UTWD3	_
MAX6758UTLD0	
MAX6758UTLD3	
MAX6758UTTD0	
MAX6758UTTD3	-
MAX6758UTZD0	
MAX6758UTZD3	
MAX6758UTWD0	-
MAX6758UTWD3	_
MAX6759UTLD0	_
MAX6759UTLD3	_
MAX6759UTTD0	_
MAX6759UTTD3	_
MAX6759UTZD0	_
MAX6759UTZD3	_
MAX6759UTWD0	
MAX6759UTWD3	_
MAX6760TALTD3	_
MAX6760TALAD3	_
MAX6760TATZD3	_

MAX6760TATWD3MAX6760TATAD3MAX6760TARAD3MAX6760TAZWD3MAX6760TAZAD3MAX6760TAWED3MAX676TAWAD3MAX676TALTD3MAX6761TALTD3MAX6761TALAD3MAX6761TATWD3MAX6761TATAD3MAX6761TATAD3MAX6761TATAD3MAX6761TATAD3MAX6761TAZAD3MAX6761TAZAD3MAX6761TAZAD3MAX6761TAZD3MAX6761TAWD3MAX6761TAWD3MAX6761TAWD3MAX6762TALAD3MAX6762TALAD3MAX6762TALAD3MAX6762TALAD3MAX6762TAZAD3MAX6762TAZAD3MAX6762TAZAD3MAX6762TAZAD3MAX6762TAZAD3MAX6762TAZAD3MAX6762TAZAD3MAX6762TAZAD3MAX6762TAZAD3MAX6762TAZAD3MAX6762TAZAD3MAX6762TAZAD3MAX6762TAWD3MAX6762TAWD3MAX6762TAWD3MAX6762TAWD3MAX6762TAWD3MAX6762TAWD3MAX6762TAWD3MAX6762TAWD3MAX6762TAWD3MAX6762TAWD3MAX6762TAWD3MAX6764UT	PART
MAX6760TARAD3 MAX6760TAZWD3 MAX6760TAZAD3 MAX6760TAWED3 MAX6760TAWAD3 MAX6761TALTD3 MAX6761TALAD3 MAX6761TALAD3 MAX6761TALAD3 MAX6761TALAD3 MAX6761TALAD3 MAX6761TALAD3 MAX6761TATD3 MAX6761TATD3 MAX6761TATAD3 MAX6761TARAD3 MAX6761TARAD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6762TALD3 MAX6762TALD3 MAX6762TALD3 MAX6762TATD3 MAX6762TATD3 MAX6762TATAD3 MAX6762TARAD3 MAX6762TARAD3 MAX6762TARAD3 MAX6762TAWD3 MAX6762TAWD3 MAX6762TAWAD3 MAX6762TAWAD3 MAX6762TAWAD3 MAX6762TAWAD3 MAX6762TAWAD3 MAX6762TAWAD3 MAX6762TAWAD3 MAX6762TAWAD3	MAX6760TATWD3
MAX6760TAZWD3 MAX6760TAZAD3 MAX6760TAWED3 MAX6760TAWAD3 MAX6761TALTD3 MAX6761TALAD3 MAX6761TALAD3 MAX6761TATZD3 MAX6761TATD3 MAX6761TATD3 MAX6761TATD3 MAX6761TATD3 MAX6761TATD3 MAX6761TATD3 MAX6761TARAD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6762TALD3 MAX6762TALD3 MAX6762TALD3 MAX6762TATD3 MAX6762TATD3 MAX6762TARAD3 MAX6762TARAD3 MAX6762TAZWD3 MAX6762TAWD3 MAX6762TAWD3 MAX6762TAWD3 MAX6762TAWD3 MAX6762TAWD3 MAX6762TAWD3 MAX6762TAWD3 MAX6762TAWAD3 MAX6762TAWAD3 MAX6763UT	MAX6760TATAD3
MAX6760TAZAD3 MAX6760TAWED3 MAX6760TAWAD3 MAX6761TALTD3 MAX6761TALAD3 MAX6761TALAD3 MAX6761TATZD3 MAX6761TATAD3 MAX6761TATAD3 MAX6761TATAD3 MAX6761TATAD3 MAX6761TARAD3 MAX6761TARAD3 MAX6761TAZWD3 MAX6761TAWED3 MAX6761TAWED3 MAX6761TAWAD3 MAX6762TALD3 MAX6762TALD3 MAX6762TALD3 MAX6762TATD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TARAD3 MAX6762TARAD3 MAX6762TARAD3 MAX6762TAZWD3 MAX6762TAWB3 MAX6762TAWB3 MAX6762TAWB3 MAX6762TAWB3 MAX6762TAWB3 MAX6762TAWAD3 MAX6762TAWAD3 MAX6763UT	MAX6760TARAD3
MAX6760TAWED3 MAX6760TAWAD3 MAX6761TALTD3 MAX6761TALAD3 MAX6761TALAD3 MAX6761TATZD3 MAX6761TATWD3 MAX6761TATAD3 MAX6761TATAD3 MAX6761TATAD3 MAX6761TARAD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAWED3 MAX6761TAWAD3 MAX6762TALD3 MAX6762TALD3 MAX6762TALD3 MAX6762TALD3 MAX6762TATD3 MAX6762TATD3 MAX6762TATAD3 MAX6762TARAD3 MAX6762TARAD3 MAX6762TAZWD3 MAX6762TAWED3 MAX6762TAWED3 MAX6762TAWED3 MAX6762TAWED3 MAX6762TAWAD3 MAX6763UT	MAX6760TAZWD3
MAX6760TAWAD3 MAX6761TALTD3 MAX6761TALAD3 MAX6761TATZD3 MAX6761TATWD3 MAX6761TATAD3 MAX6761TATAD3 MAX6761TARAD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAWED3 MAX6762TALD3 MAX6762TALD3 MAX6762TALD3 MAX6762TATD3 MAX6762TATD3 MAX6762TATD3 MAX6762TARAD3 MAX6762TARAD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAWED3 MAX6762TAWED3 MAX6762TAWED3 MAX6762TAWAD3 MAX6763UT	MAX6760TAZAD3
MAX6761TALTD3 MAX6761TALAD3 MAX6761TATZD3 MAX6761TATWD3 MAX6761TATMD3 MAX6761TATAD3 MAX6761TARAD3 MAX6761TAZMD3 MAX6761TAZMD3 MAX6761TAZMD3 MAX6761TAZMD3 MAX6761TAZMD3 MAX6761TAWED3 MAX6761TAWED3 MAX6762TALTD3 MAX6762TALD3 MAX6762TALD3 MAX6762TATZD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAWED3 MAX6762TAWAD3 MAX6762TAWAD3	MAX6760TAWED3
MAX6761TALAD3 MAX6761TATZD3 MAX6761TATWD3 MAX6761TATAD3 MAX6761TARAD3 MAX6761TARAD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAWED3 MAX6761TAWAD3 MAX6762TALTD3 MAX6762TALAD3 MAX6762TALAD3 MAX6762TATZD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TAZWD3 MAX6762TAWED3 MAX6762TAWED3 MAX6762TAWAD3 MAX6763UT	MAX6760TAWAD3
MAX6761TATZD3 MAX6761TATZD3 MAX6761TATAD3 MAX6761TARAD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAWED3 MAX6761TAWED3 MAX6762TALTD3 MAX6762TALD3 MAX6762TALD3 MAX6762TATZD3 MAX6762TATWD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TAWD3 MAX6762TAWB3 MAX6762TAWED3 MAX6762TAWAD3 MAX6763UT	MAX6761TALTD3
MAX6761TATWD3 MAX6761TATAD3 MAX6761TARAD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAZWD3 MAX6761TAWED3 MAX6762TALTD3 MAX6762TALAD3 MAX6762TALAD3 MAX6762TALAD3 MAX6762TATWD3 MAX6762TATWD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TAXWD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAWED3 MAX6762TAWED3 MAX6762TAWAD3 MAX6762TAWAD3 MAX6762TAWAD3	MAX6761TALAD3
MAX6761TATAD3 MAX6761TATAD3 MAX6761TAZAD3 MAX6761TAZAD3 MAX6761TAZAD3 MAX6761TAZAD3 MAX6761TAWED3 MAX6761TAWAD3 MAX6762TALTD3 MAX6762TALAD3 MAX6762TALAD3 MAX6762TATZD3 MAX6762TATAD3 MAX6762TAWED3 MAX6762TAWAD3 MAX6763UT	MAX6761TATZD3
MAX6761TARAD3 MAX6761TAZWD3 MAX6761TAZAD3 MAX6761TAWED3 MAX6761TAWAD3 MAX6762TALTD3 MAX6762TALAD3 MAX6762TALAD3 MAX6762TALAD3 MAX6762TATZD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TARAD3 MAX6762TARAD3 MAX6762TAZWD3 MAX6762TAWED3 MAX6762TAWED3 MAX6762TAWED3 MAX6762TAWAD3 MAX6762TAWAD3 MAX6763UT	MAX6761TATWD3
MAX6761TAZWD3 MAX6761TAZAD3 MAX6761TAWED3 MAX6761TAWAD3 MAX6762TALTD3 MAX6762TALAD3 MAX6762TALAD3 MAX6762TATZD3 MAX6762TATWD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TARAD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAWED3 MAX6762TAWED3 MAX6762TAWAD3 MAX6762TAWAD3	MAX6761TATAD3
MAX6761TAZAD3 MAX6761TAWED3 MAX6761TAWAD3 MAX6762TALTD3 MAX6762TALAD3 MAX6762TALAD3 MAX6762TATZD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TARAD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAWED3 MAX6762TAWED3 MAX6762TAWAD3 MAX6763UT	MAX6761TARAD3
MAX6761TAWED3 MAX6761TAWAD3 MAX6762TALTD3 MAX6762TALAD3 MAX6762TATZD3 MAX6762TATWD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TARAD3 MAX6762TARAD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAWED3 MAX6762TAWED3 MAX6762TAWAD3 MAX6763UT	MAX6761TAZWD3
MAX6761TAWAD3 MAX6762TALTD3 MAX6762TALAD3 MAX6762TATZD3 MAX6762TATWD3 MAX6762TATAD3 MAX6762TARAD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAWED3 MAX6762TAWAD3 MAX6763UT	MAX6761TAZAD3
MAX6762TALTD3 MAX6762TALAD3 MAX6762TATZD3 MAX6762TATWD3 MAX6762TATAD3 MAX6762TATAD3 MAX6762TARAD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAWED3 MAX6762TAWAD3 MAX6763UT	MAX6761TAWED3
MAX6762TALAD3 MAX6762TATZD3 MAX6762TATWD3 MAX6762TATAD3 MAX6762TARAD3 MAX6762TAZWD3 MAX6762TAZWD3 MAX6762TAZAD3 MAX6762TAWED3 MAX6762TAWAD3 MAX6763UT	MAX6761TAWAD3
MAX6762TATZD3 MAX6762TATZD3 MAX6762TATAD3 MAX6762TARAD3 MAX6762TAZWD3 MAX6762TAZAD3 MAX6762TAZAD3 MAX6762TAWED3 MAX6762TAWAD3 MAX6763UT	MAX6762TALTD3
MAX6762TATWD3 MAX6762TATAD3 MAX6762TARAD3 MAX6762TAZWD3 MAX6762TAZAD3 MAX6762TAWED3 MAX6762TAWED3 MAX6762TAWAD3 MAX6763UT	MAX6762TALAD3
MAX6762TATAD3 MAX6762TARAD3 MAX6762TAZWD3 MAX6762TAZAD3 MAX6762TAZAD3 MAX6762TAWED3 MAX6762TAWAD3 MAX6763UT	MAX6762TATZD3
MAX6762TARAD3 MAX6762TAZWD3 MAX6762TAZAD3 MAX6762TAZAD3 MAX6762TAWED3 MAX6762TAWAD3 MAX6763UT	MAX6762TATWD3
MAX6762TAZWD3 MAX6762TAZAD3 MAX6762TAWED3 MAX6762TAWAD3 MAX6763UT	MAX6762TATAD3
MAX6762TAZAD3 MAX6762TAWED3 MAX6762TAWAD3 MAX6763UT	MAX6762TARAD3
MAX6762TAWED3 MAX6762TAWAD3 MAX6763UT	MAX6762TAZWD3
MAX6762TAWAD3 MAX6763UT	
MAX6763UT	
MAX6764UT	MAX6763UT
	MAX6764UT

Low-Power, Single/Dual-Voltage Window Detectors

Pin Configurations

Chip Information

PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
5 SOT23	U5+1	<u>21-0057</u>	<u>90-0174</u>
6 SOT23	U6-1	<u>21-0058</u>	<u>90-0175</u>
8 TDFN	T833-2	<u>21-0137</u>	<u>90-0059</u>

Low-Power, Single/Dual-Voltage Window Detectors

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
4	1/11	Added /V to the MAX6759 Ordering Information and added soldering temperature in the Absolute Maximum Rating section	2, 16
5	10/15	Adding /V part number of MAX6756 to data sheet	1, 16–18
6	11/15	Updated package code for 5 SOT23 in Ordering Information section	19
7	3/16	Re-added Standard Versions table	17–18
8	6/16	Removed top mark information from Standard Versions table	17–18

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. © 2016 Maxim Integrated Products, Inc. | 19