ABSOLUTE MAXIMUM RATINGS

V _{DD} to GND	0.3V to +6V
DIN, SCLK, CS	0.3V to +6V
H _X , L _X , W _X to GND	
Maximum Continuous Current into H _X , L _X ,	and Wx±1mA
Continuous Power Dissipation ($T_A = +70^{\circ}$	C)
14-Pin TSSOP (derate 9.1mW/°C above	+70°C)727mW

Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = +5V, unless otherwise noted. V_H = V_{DD}, V_L = 0, T_A = T_{MIN} \text{ to } T_{MAX}$. Typical values are at $V_{DD} = +5V$, $T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS		
DC PERFORMANCE (Voltage-Div	/ider Mode)						•		
Resolution	Ν			8			Bits		
Integral Nonlinearity (Notes 1, 2)	INL					±1/2	LSB		
Differential Nonlinearity (Notes 1, 2)	DNL					±1/2	LSB		
End-to-End Resistor Tempco	TCR				35		ppm/°C		
Ratiometric Resistor Tempco					5		ppm/°C		
		MAX5413		-8					
Full-Scale Error		MAX5414			-1.6		LSB		
		MAX5415			0.8		1		
		MAX5413			+8				
Zero-Scale Error		MAX5414			+1.6		LSB		
		MAX5415		+0.8					
DC PERFORMANCE (Variable-Re	sistor Mode))							
Resolution	Ν			8			Bits		
	INL	$V_{DD} = +5V$				±1	LSB		
Interval Nardin cerity (Natao 1, 2)		IL V _{DD} = +3V	MAX5413			±3			
Integral Nonlinearity (Notes 1, 3)			MAX5414			±1.5	LSB		
			MAX5415			±1.5	1		
Differential Nonlinearity		$V_{DD} = +5V$				110	1.00		
(Notes 1, 3)	DNL	$V_{DD} = +3V$				±1/2	LSB		
DC PERFORMANCE (Resistor Ch	aracteristics)							
Winer Desistance (Nate 4)	Deer	$V_{DD} = +5V$			275		Ω		
Wiper Resistance (Note 4)	Rw	$V_{DD} = +3V$				550			
	0	MAX5413			50		2		
Wiper Capacitance	CW	MAX5414/MAX	5415		30		pF		
		MAX5413		7.5	10	12.5			
End-to-End Resistance	R _{HL}	MAX5414		37.5	50	62.5	kΩ		
		MAX5415		75	100	125			

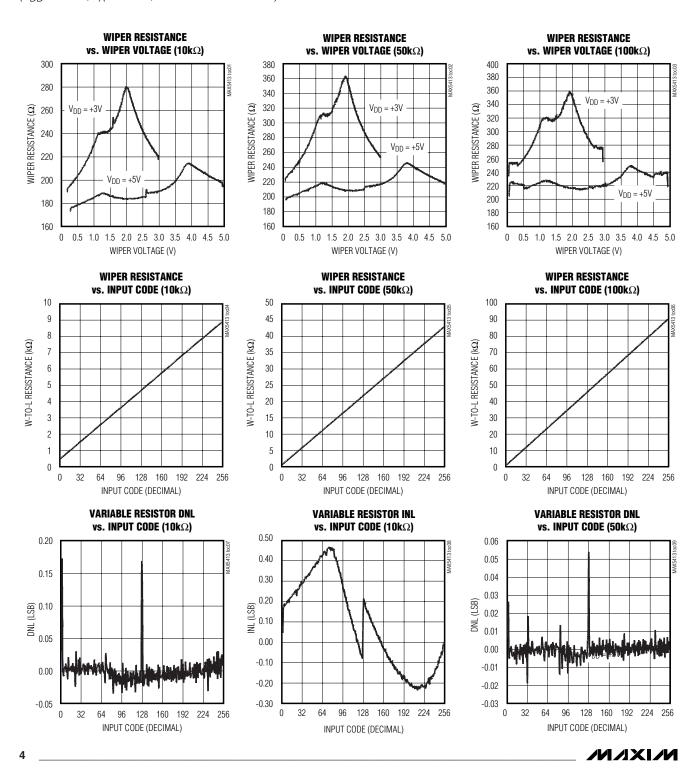
ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +5V, unless otherwise noted. V_H = V_{DD}, V_L = 0, T_A = T_{MIN}$ to T_{MAX} . Typical values are at $V_{DD} = +5V$, $T_A = +25^{\circ}C$, unless otherwise noted.)

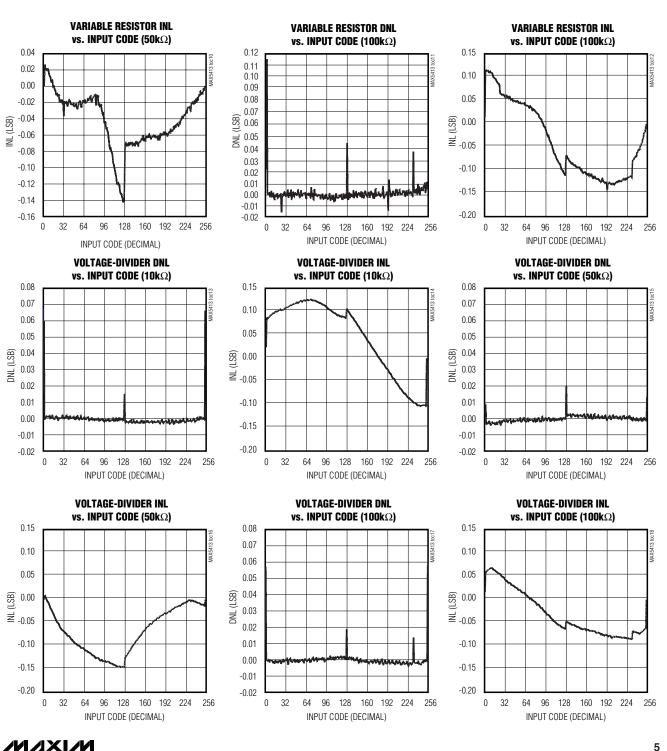
PARAMETER	SYMBOL	CONDITIONS	6	MIN	TYP	MAX	UNITS
DIGITAL INPUTS							
Input High Voltage	VIH			0.7 x V _{DD}			V
Input Low Voltage	VIL					$0.3 \times V_{DD}$	V
Input Leakage Current						±1.0	μΑ
Input Capacitance					5		pF
TIMING CHARACTERISTICS (AN	IALOG)						
		MAX5413		100			
Wiper-Settling Time	ts	MAX5414			325		ns
		MAX5415		650]
TIMING CHARACTERISTICS (DIC	GITAL) (Note	e 5)					
Maximum SCLK Frequency				10			MHz
SCLK Clock Period	tCP			100			ns
SCLK Pulse Width High	tсн			40			ns
SCLK Pulse Width Low	tCL			40			ns
CS Fall to SCLK Rise Setup Time	tcss			40			ns
SCLK Rise to \overline{CS} Rise Hold Time	tCSH			0			ns
DIN Setup Time	tDS			40			ns
DIN Hold Time	tDH			0			ns
SCLK Rise to \overline{CS} Fall Delay	tcso			10			ns
CS Rise to SCLK Rise Hold	tCS1			40			ns
CS Pulse Width High	tcsw			100			ns
POWER SUPPLIES							
Supply Voltage	V _{DD}			2.7		5.5	V
Supply Current	urrent I _{DD} CS	$\overline{\text{CS}} = \text{SCLK} = \text{DIN} = V_{\text{DD}}$	$V_{DD} = +5V$		0.8	5	μA
		CO = OCLV = DIIN = ADD	$V_{DD} = +2.7V$		0.1		μΑ

Note 1: Linearity is defined in terms of the H_X to L_X code-dependent resistance.

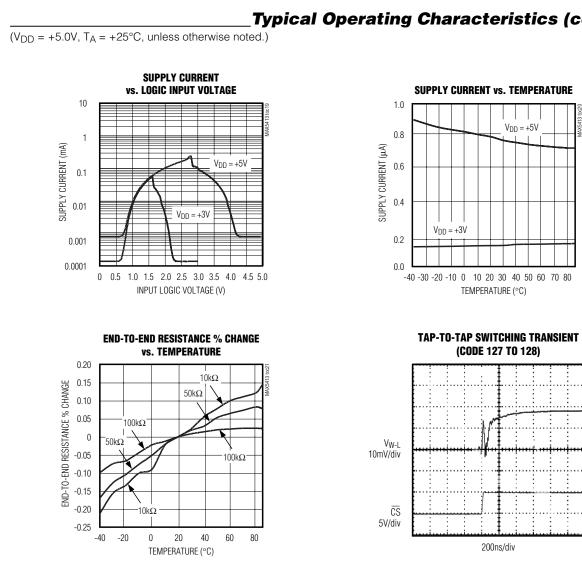
Note 2: The DNL and INL are measured with the potentiometer configured as a voltage-divider with $H_X = V_{DD}$ and $L_X = 0$. The wiper terminal is unloaded and measured with an ideal voltmeter.


Note 3: The DNL and INL are measured with the potentiometer configured as a variable resistor. H_X is unconnected and L_X = 0. At $V_{DD} = +5V$, the wiper terminal is driven with a source current of 400µA for the 10k Ω configuration, 80µA for the 50k Ω configuration, and 40µA for the 100k Ω configuration. At $V_{DD} = +3V$, 200µA/40µA/20µA for 10k Ω /50k Ω /100k Ω configurations, respectively.

Note 4: The wiper resistance is the worst value measured by injecting into W_X , a current $I_W = V_{DD} / R_{HL}$.


Note 5: Digital timing is guaranteed by design.

(V_{DD} = +5.0V, T_A = +25°C, unless otherwise noted.)


Typical Operating Characteristics

(V_{DD} = +5.0V, T_A = +25°C, unless otherwise noted.)

MAX5413/MAX5414/MAX5415

Typical Operating Characteristics (continued)

Pin Description

PIN	NAME	FUNCTION	
1	GND	Ground	
2	LB	Low Terminal of Resistor B	
3	HB	High Terminal of Resistor B	
4	WB	Wiper Terminal of Resistor B	
5, 6, 10	N.C.	No Connection to this Terminal	
7	CS	SPI Chip Select	
8	DIN	SPI Serial Data Input	
9	SCLK	SPI Clock Input	
11	V _{DD}	Power Supply, +2.7V to +5.5V. Connect a 0.1µF capacitor to GND.	
12	WA	Wiper Terminal of Resistor A	
13	HA	High Terminal of Resistor A	
14	LA	Low Terminal of Resistor A	

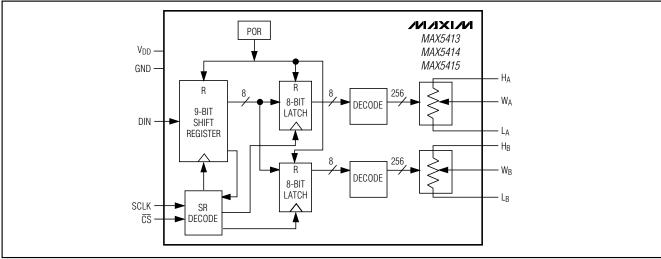


Figure 1. MAX5413/MAX5414/MAX5415 Functional Diagram: Dual 3-Terminal Potentiometers in 14-Pin TSSOP Configuration

Detailed Description

Each potentiometer consists of 255 fixed resistors in series between pins H_X and L_X (Figure 1). The potentiometer wiper (pin W_X) can be programmed to access any one of the 256 different tap points on the resistor string. The MAX5413/MAX5414/MAX5415 require nine bits to program the wiper position. The first bit is an address code, allowing one or the other potentiometer

to be selected for programming. The potentiometers are programmed independently of each other.

The MAX5413/MAX5414/MAX5415 use a 3-wire serial data interface to control the wiper tap position. This write-only interface contains three inputs: Chip Select (\overline{CS}) , Data In (DIN), and Data Clock (SCLK). When \overline{CS} is taken low, data from the DIN pin is synchronously loaded into the serial shift register on each rising edge of each SCLK pulse (Figure 2). After all the data bits

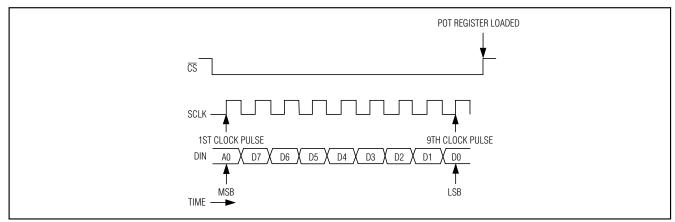


Figure 2. Potentiometer Serial Data Timing Circuit

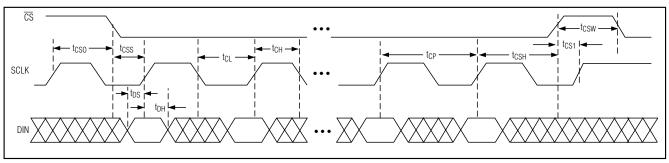


Figure 3. Detailed Serial Interface Timing Diagram

have been shifted in, they are latched into the appropriate potentiometer control register when \overline{CS} transitions from low to high. Note that if \overline{CS} is not kept low during the entire data stream, the data will be corrupted and the device will need to be reloaded.

The first bit A0 (address bit) is used to address one or the other of the potentiometers for programming. Potentiometer control register A is selected for writing when A0 is 'zero,' and potentiometer control register B is selected when A0 is 'one.'

The MAX5413/MAX5414/MAX5415 feature POR circuitry that sets the wiper to the midscale position at powerup.

Applications Information

The MAX5413/MAX5414/MAX5415 are intended for a variety of circuits where accurate, fine-tuning adjustable resistance is required, such as in adjustable voltage or adjustable gain circuit configurations. It is primarily used in either a potentiometer divider or a variable-resistor configuration.

Adjustable Current-to-Voltage Converter

Figure 5 shows the MAX5413/MAX5414/MAX5415 being used with a MAX4250 low-noise op amp to fine tune a current-to-voltage converter. Pins H_X and W_X of the MAX5413/MAX5414/MAX5415 are connected to the node between R3 and R2, and pin L_X is connected to ground. Circuit space is minimized due to both devices' packaging.

Adjustable Gain Amplifier

Figure 6 shows how to use the MAX5413/MAX5414/ MAX5415 to digitally adjust the gain of a noninverting op amp configuration. In Figure 6a, connect the MAX5413/ MAX5414/MAX5415 as a variable resistor in series with a resistor to ground to form the adjustable gain control of a noninverting amplifier.

Similarly, Figure 6b shows how to use the MAX5413/ MAX5414/MAX5415 as a 3-terminal potentiometer. In this application, the MAX5413/MAX5414/MAX5415 low 5ppm/°C ratiometric tempco allows for a very stable adjustable gain configuration over temperature.

ADDRESS	DATA WORD							
B0 (A0)	B1 (D7)	B2 (D6)	B3 (D5)	B4 (D4)	B5 (D3)	B6 (D2)	B7 (D1)	B8 (D0)
(MSB)								(LSB)
First Bit In								Last Bit In

Figure 4. Serial Data Format

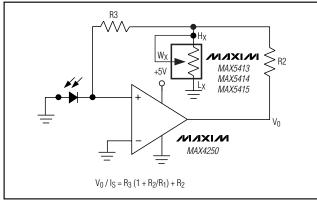


Figure 5. I to V Converter

Adjustable Voltage Reference

In Figure 7, the MAX5413/MAX5414/MAX5415 are shown with the MAX6160 to make an adjustable voltage reference. In this circuit, the H_X pin of the MAX5413/MAX5414/MAX5415 is connected to the OUT pin of the MAX6160, the L_X pin of the MAX5413/ MAX5414/MAX5415 is connected to GND, and the W_X pin of the MAX5413/MAX5414/MAX5415 is connected to the ADJ pin of the MAX6160. The MAX5413/ MAX5414/MAX5415 allow precise setting of the voltage reference output. A low 5ppm/°C ratiometric tempco allows a very stable adjustable voltage overtemperature.

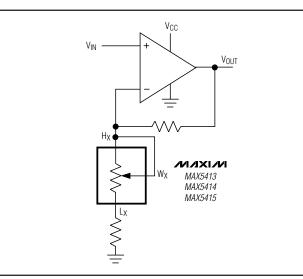


Figure 6a. Adjustable Gain Circuit

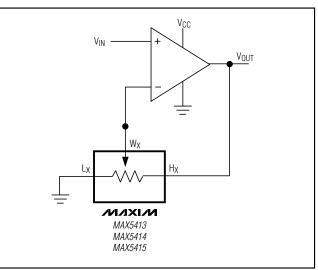
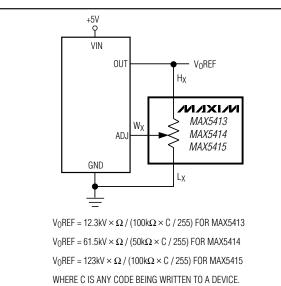
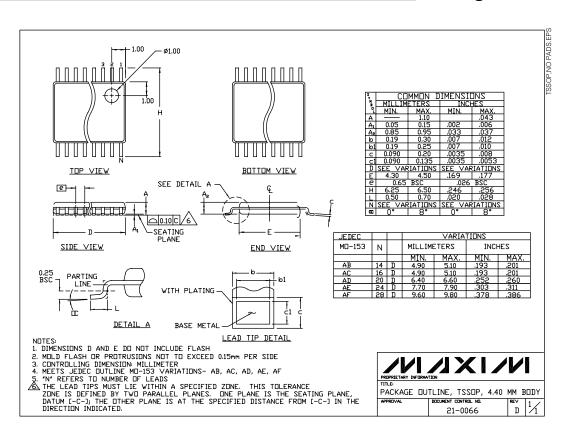



Figure 6b. Adjustable Gain Circuit Using 3-Terminal Potentiometer

MAX5413/MAX5414/MAX5415



Chip Information

TRANSISTOR COUNT: 8689 PROCESS: BICMOS

Figure 7. Adjustable Voltage Reference

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _

© 2001 Maxim Integrated Products

Printed USA

MAXIM is a registered trademark of Maxim Integrated Products.

11