TABLE OF CONTENTS

Features	1
Applications	1
Pin Connection Diagram	1
General Description	1
Revision History	2
Specifications	3
Electrical Characteristics	3
Absolute Maximum Ratings	5

REVISION HISTORY

9/14—Rev. C to Rev. D

Changes to Figure 4 and Figure 7
4/13—Rev. B to Rev. C
Updated FormatUniversal
Added Applications Section, Deleted Figure 2,
Renumbered Sequentially1
Deleted Table 3, Renumbered Sequentially 4
Changes to Table 3
Changes to Typical Performance Characteristics Section
Updated Outline Dimensions 11
Changes to Ordering Guide 11

ESD Caution	5
Typical Performance Characteristics	6
Test Circuits	8
Applications Information	9
Typical Applications	
Outline Dimensions	
Ordering Guide	

2/02—Rev. A to Rev. B

Edits to Features	1
Deleted Wafer Test Limits	
Deleted DICE Characteristics	3
Edits to Table 5	7

ELECTRICAL CHARACTERISTICS

 V_{CB} = 15 V, I_C = 10 μ A, T_A = 25°C, unless otherwise noted.

Table 1.

			MAT01AH		MAT01GH				
Parameter	Symbol	Test Conditions/Comments	Min	Тур	Мах	Min	Тур	Min	Unit
VOLTAGE									
Breakdown Voltage	BV _{CEO}	$I_C = 100 \ \mu A$	45			45			V
Offset Voltage	Vos			0.04	0.1		0.10	0.5	mV
Offset Voltage Stability									
First Month ¹	Vos/Time			2.0			2.0		μV/Mo
Long Term ²				0.2			0.2		μV/Mo
CURRENT									
Offset Current	los			0.1	0.6		0.2	3.2	nA
Bias Current	IB			13	20		18	40	nA
Current Gain	h _{FE}	I _c = 10 nA		590			430		
		$I_C = 10 \ \mu A$	500	770		250	560		
		$I_c = 10 \text{ mA}$		840			610		
Current Gain Match	Δh_{FE}	$I_C = 10 \ \mu A$		0.7	3.0		1.0	8.0	%
		$100 \text{ nA} \leq I_C \leq 10 \text{ mA}$		0.8			1.2		%
NOISE									
Low Frequency Noise Voltage	e _n p-p	0.1 Hz to 10 Hz ³		0.23	0.4		0.23	0.4	μV p-p
Broadband Noise Voltage	e _n rms	1 Hz to 10 kHz		0.60			0.60		μV rms
Noise Voltage Density	en	$f_0 = 10 \text{ Hz}^3$		7.0	9.0		7.0	9.0	nV/√Hz
		$f_0 = 100 \text{ Hz}^3$		6.1	7.6		6.1	7.6	nV/√Hz
		$f_0 = 1000 \text{ Hz}^3$		6.0	7.5		6.0	7.5	nV/√Hz
OFFSET VOLTAGE/CURRENT									
Offset Voltage Change	$\Delta V_{OS}/\Delta V_{CB}$	$0 \le V_{CB} \le 30 \ V$		0.5	3.0		0.8	8.0	μV/V
Offset Current Change	$\Delta I_{OS}/\Delta V_{CB}$	$0 \le V_{CB} \le 30 \ V$		2	15		3	70	pA/V
LEAKAGE									
Collector to Base Leakage Current	Ісво	$V_{CB} = 30 V$, $I_E = 0^4$		15	50		25	200	pА
Collector to Emitter Leakage Current	ICES	$V_{CE} = 30 V$, $V_{BE} = 0^{4, 5}$		50	200		90	400	pА
Collector to Collector Leakage Current	lcc	$V_{CC}=30V^5$		20	200		30	400	pА
SATURATION									
Collector Saturation Voltage	V _{CE(SAT)}	$I_B = 0.1 \text{ mA}, I_C = 1 \text{ mA}$		0.12	0.20		0.12	0.25	V
		$I_B = 1 \text{ mA}, I_C = 10 \text{ mA}$		0.8			0.8		V
GAIN BANDWIDTH PRODUCT	fT	$V_{CE} = 10 \text{ V}, I_C = 10 \text{ mA}$		450			450		MHz
CAPACITANCE									
Output Capacitance	COB	$V_{CB} = 15 \text{ V}, I_E = 0$		2.8			2.8		pF
Collector to Collector Capacitance	Ccc	$V_{CC} = 0$		8.5			8.5		pF

¹ Exclude first hour of operation to allow for stabilization.

² Parameter describes long-term average drift after first month of operation.

⁴ The collector to base (l_{GBO}) and collector to emitter (l_{CES}) leakage currents can be reduced by a factor of 2 to 10 times by connecting the substrate (package) to a potential that is lower than either collector voltage. ⁵ l_{CC} and l_{CES} are guaranteed by measurement of l_{CBO}.

³ Sample tested.

MAT01

 V_{CB} = 15 V, I_{C} = 10 $\mu A,\,-55^{o}C \leq T_{A} \leq +125^{o}C,$ unless otherwise noted.

Table 2.

			MAT01AH		MAT01GH				
Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Min	Тур	Min	Unit
OFFSET VOLTAGE/CURRENT									
Offset Voltage	Vos			0.06	0.15		0.14	0.70	mV
Average Offset Voltage Drift ¹	TCVos			0.15	0.50		0.35	1.8	μV/°C
Offset Current	los			0.9	8.0		1.5	15.0	nA
Average Offset Current Drift ²	TClos			10	90		15	150	pA/°C
BIAS CURRENT	IB			28	60		36	130	nA
CURRENT GAIN	h _{FE}		167	400		77	300		
LEAKAGE CURRENT									
Collector to Base Leakage Current	Ісво	$T_A = 125^{\circ}C$, $V_{CB} = 30 V$, $I_E = 0^3$		15	80		25	200	nA
Collector to Emitter Leakage Current	I _{CES}	$T_A = 125^{\circ}C$, $V_{CE} = 30$ V, $V_{BE} = 0^{1, 3}$		50	300		90	400	nA
Collector to Collector Leakage Current	lcc	$T_A = 125^{\circ}C$, $V_{CC} = 30 V^1$		30	200		50	400	nA

¹ Guaranteed by V_{os} test $\left(TCV_{OS} \cong \frac{V_{OS}}{T}$ for $V_{OS} << V_{BE}\right)$, T = 298 K for T_A = 25°C.

² Guaranteed by los test limits over temperature. ³ The collector to base (I_{CBO}) and collector to emitter (I_{CES}) leakage currents can be reduced by a factor of 2 to 10 times by connecting the substrate (package) to a potential that is lower than either collector voltage.

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter ¹	Rating
Breakdown Voltage of	
Collector to Base Voltage (BV _{CBO})	45 V
Collector to Emitter Voltage (BV _{CEO})	45 V
Collector to Collector Voltage (BV _{CC})	45 V
Emitter to Emitter Voltage (BV _{EE})	45 V
Emitter to Base Voltage (BV _{EBO}) ²	5 V
Current	
Collector (I _c)	25 mA
Emitter (I _E)	25 mA
Total Power Dissipation	
Case Temperature ≤ 40°C ³	1.8 W
Ambient Temperature ≤ 70°C⁴	500 mW
Temperature Range	
Operating	–55°C to +125°C
Junction	–55°C to +150°C
Storage	–65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

¹ Absolute maximum ratings apply to packaged devices.

 2 Application of reverse bias voltages in excess of rating shown can result in degradation of h_{FE} and h_{FE} matching characteristics. Do not attempt to measure BV_{\text{EBO}} greater than the 5 V rating.

³ Rating applies to applications using heat sinking to control case temperature. Derate linearity at 16.4 mW/°C for case temperatures above 40°C.

⁴ Rating applies to applications not using heat sinking; device in free air only. Derate linearity at 6.3 mW/°C for ambient temperatures above 70°C. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

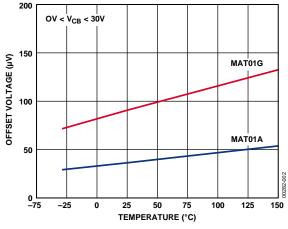


Figure 2. Offset Voltage vs. Temperature

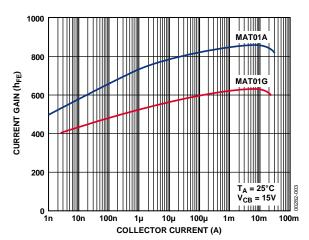


Figure 3. Current Gain vs. Collector Current

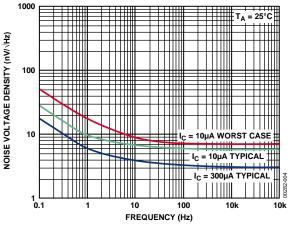


Figure 4. Noise Voltage Density vs. Frequency

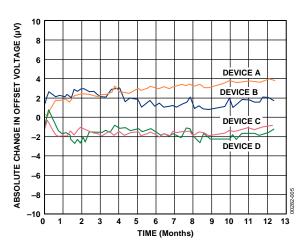
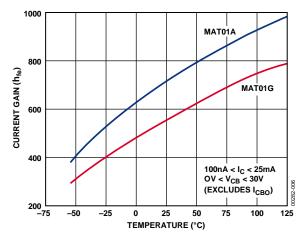



Figure 5. Offset Voltage vs. Time

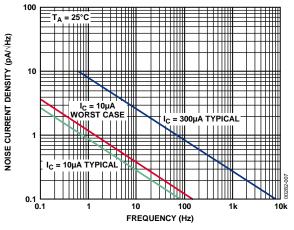
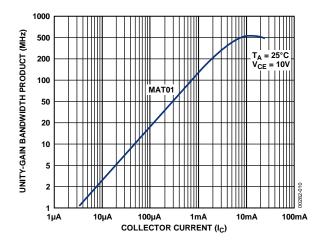



Figure 7. Noise Current Density vs. Frequency

Data Sheet

10mA MAT01 T_A = 25°C 1mA Δ < 0.3mV 100µA COLLECTOR CURRENT (Ic) 10µA 1μΑ **Ξ**Δ < 0.1mV 100nA 10nA 1nA Δ < 0.3mV ≈ DEVIATION FROM STRAIGHT LINE Δ 100pA 10pA L 0 100 500 600 200 300 400 700 800 BASE TO EMITTER VOLTAGE (mV)

Figure 8. Collector Current vs. Base to Emitter Voltage

MAT01

Figure 10. Unity-Gain Bandwidth vs. Collector Current

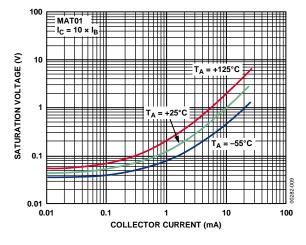
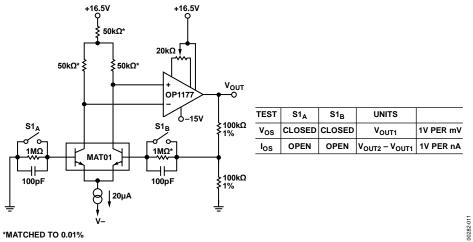
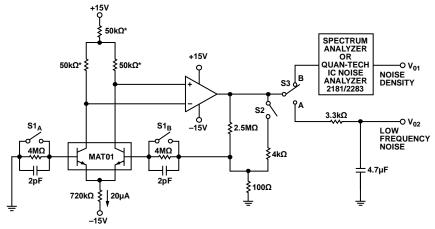



Figure 9. Saturation Voltage vs. Collector Current


MAT01

TEST CIRCUITS

*MATCHED TO 0.01%

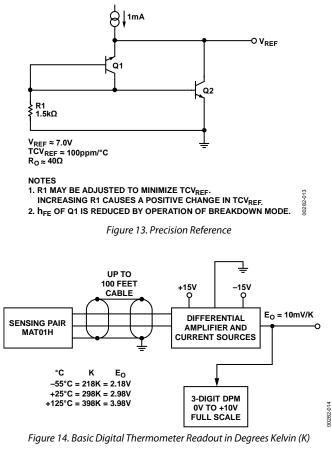
Figure 11. Matching Measurement Circuit

*MATCHED TO 0.01%

TEST	S1 _A	S1 _B	S2	S3**	READING
NOISE VOLTAGE DENSITY (PER TRANSISTOR)	CLOSED	CLOSED	CLOSED	Α	V ₀₁ /√2
NOISE CURRENT DENSITY (PER TRANSISTOR)	OPEN	OPEN	CLOSED	Α	V ₀₁ /(√2 × 4MΩ)
LOW FREQUENCY NOISE (REFERRED TO INPUT)	CLOSED	CLOSED	OPEN	в	V ₀₂ PEAK-TO-PEAK 25,000

00282-012

**A AND B REFER TO THE THROW POSITION OF THE SWITCH


Figure 12. Noise Measurement Circuit

APPLICATIONS INFORMATION

Application of reverse bias voltages to the emitter to base junctions in excess of ratings (5 V) may result in degradation of h_{FE} and h_{FE} matching characteristics. Check circuit designs to ensure that reverse bias voltages above 5 V cannot be applied during transient conditions, such as at circuit turn-on and turn-off. Stray thermoelectric voltages generated by dissimilar metals at the contacts to the input terminals can prevent realization of the predicted drift performance. Maintain both input terminals at the same temperature, preferably close to the temperature of the device package.

Downloaded from Arrow.com.

TYPICAL APPLICATIONS

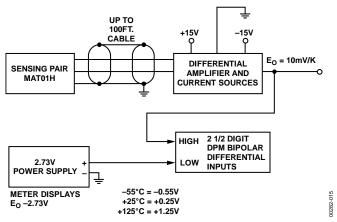
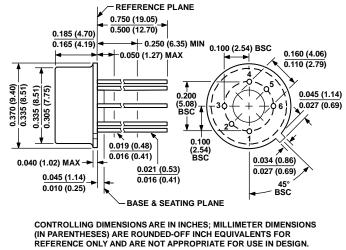



Figure 15. Digital Thermometer with Readout in °C

OUTLINE DIMENSIONS

022306-A

Figure 16. 6-Pin Metal Header Package [TO-78] (H-06) Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model ¹	Vos Maximum (T _A = 25°C)	Temperature Range	Package Description	Package Option
MAT01AH	0.1 mV	−55°C to +125°C	6-Pin Metal Header Package [TO-78]	H-06
MAT01AHZ	0.1 mV	−55°C to +125°C	6-Pin Metal Header Package [TO-78]	H-06
MAT01GH	0.5 mV	–55°C to +125°C	6-Pin Metal Header Package [TO-78]	H-06
MAT01GHZ	0.5 mV	–55°C to +125°C	6-Pin Metal Header Package [TO-78]	H-06

¹ Z = RoHS Compliant Part.

MAT01

NOTES

©1973–2014 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00282-0-9/14(D)

www.analog.com