
ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC}) 6V
Input Voltage
Driver $-0.3V$ to $V_{CC} + 0.3V$
Receiver –25V to 25V
On/ $\overline{\text{Off}}$ Pin -0.3V to V_{CC} + 0.3V
Output Voltage
Driver – 25V to 25V
Receiver $-0.3V$ to $V_{CC} + 0.3V$
Short Circuit Duration
V ⁺
V ⁻ 30 sec
Driver Output Indefinite
Receiver Output Indefinite
Operating Temperature Range
Commercial (LTC1349C) 0°C to 70°C
Industrial (LTC1349I)40°C to 85°C
Storage Temperature Range65°C to 150°C
Lead Temperature (Soldering, 10 sec) 300°C

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

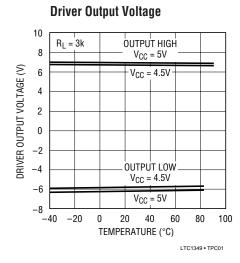
DC ELECTRICAL CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range. $V_{CC} = 5V$, $C1 = C2 = C3 = C4 = 0.1 \mu F$, unless noted.

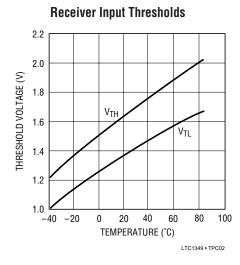
PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Any Driver	'					
Output Voltage Swing		sitive • gative •	5.0 -5.0	7.0 -6.5		V
Logic Input Voltage Level	Input Low Level (V _{OUT} = High) Input High Level (V _{OUT} = Low)	•	2.0	1.4 1.4	0.8	V
Logic Input Current	V _{IN} = 5V V _{IN} = 0V	•			5 -5	μ Α μ Α
Output Short-Circuit Current	V _{OUT} = 0V		±9	±12		mA
Output Leakage Current	Shutdown, V _{OUT} = ±20V (Note 3)	•		±10	±500	μА
Any Receiver						
Input Voltage Thresholds	Input Low Threshold Input High Threshold	•	0.8	1.3 1.7	2.4	V
Hysteresis		•	0.1	0.4	1.0	V
Input Resistance	$-10V \le V_{\text{IN}} \le 10V$		3	5	7	kΩ
Output Voltage	Output Low, $I_{OUT} = -1.6$ mA ($V_{CC} = 5$ V) Output High, $I_{OUT} = 160$ µA ($V_{CC} = 5$ V)	•	3.5	0.2 4.8	0.4	V
Output Short-Circuit Current	Sinking Current, V _{OUT} = V _{CC}		-15	-40		mA
Output Leakage Current	Shutdown, $0 \le V_{OUT} \le V_{CC}$ (Note 3)	•		1	10	μА
Power Supply Generator						_
V ⁺ Output Voltage	I _{OUT} = 0mA I _{OUT} = 12mA			8.0 7.5		V
V ⁻ Output Voltage	I _{OUT} = 0mA I _{OUT} = -12mA			-8.0 -7.0		V
Supply Rise Time	Shutdown to Turn-On			0.2		ms
	·					1349fa

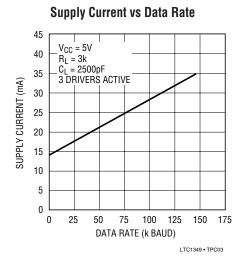
DC ELECTRICAL CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range. $V_{CC} = 5V$, $C1 = C2 = C3 = C4 = 0.1 \mu F$, unless noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Power Supply						
V _{CC} Supply Current	No Load (All Drivers $V_{IN} = V_{CC}$)(Note 2), $0^{\circ}C \le T_A \le 70^{\circ}C$	•		0.3	0.8	mA
	No Load (All Drivers $V_{IN} = 0V$)(Note 2), $0^{\circ}C \le T_A \le 70^{\circ}C$	•		0.5	1.0	mA
	No Load (All Drivers $V_{IN} = V_{CC}$)(Note 2), $0^{\circ}C \le T_A \le 85^{\circ}C$	•		0.3	1.0	mA
	No Load (All Drivers $V_{IN} = V_{CC}$)(Note 2), $-40^{\circ}C \le T_A \le 0^{\circ}C$	•		0.3	1.5	mA
	No Load (All Drivers $V_{IN} = 0V$)(Note 2), $-40^{\circ}C \le T_A \le 85^{\circ}C$	•		0.5	1.5	mA
Supply Leakage Current (V _{CC})	Shutdown (Note 3)	•		35	50	μА
On/Off Threshold Low		•		1.4	0.8	V
On/Off Threshold High		•	2.0	1.4		V

AC CHARACTERISTICS The \bullet denotes specifications which apply over the full operating temperature range. $V_{CC}=5V,\ C1=C2=C3=C4=0.1\mu F,\ unless\ noted.$

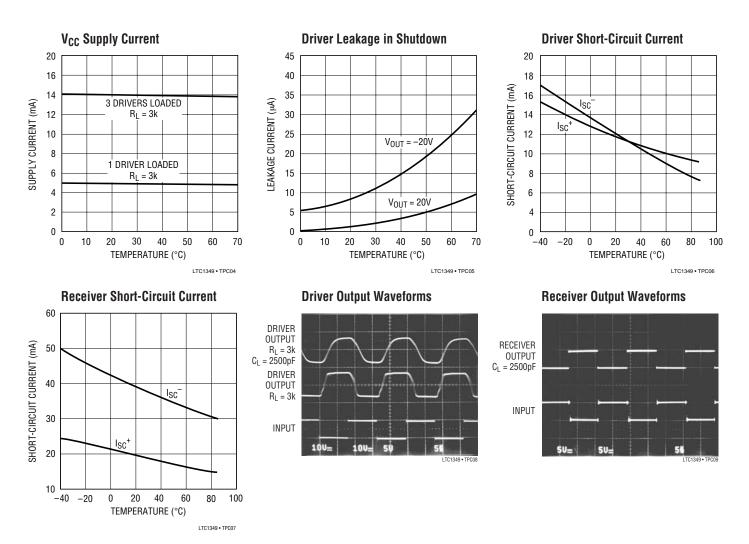

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Slew Rate	$R_L = 3k, C_L = 51pF$ $R_L = 3k, C_L = 2500pF$		3	8 5	30	V/µs V/µs
Driver Propagation Delay (TTL to RS232)	t _{HLD} (Figure 1) t _{LHD} (Figure 1)	•		2 2	3.5 3.5	μS μS
Receiver Propagation Delay (RS232 to TTL)	t _{HLR} (Figure 2) t _{LHR} (Figure 2)	•		0.3 0.2	0.8 0.8	μS μS


Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.


Note 2: Supply current is measured with driver and receiver outputs unloaded.

Note 3: Supply current and leakage current measurements in Shutdown are performed with $V_{ON/\overline{OFF}} = 0V$.

TYPICAL PERFORMANCE CHARACTERISTICS



1349fa

TYPICAL PERFORMANCE CHARACTERISTICS

PIN FUNCTIONS

 V_{CC} : 5V Input Supply Pin. Supply current is typically $35\mu A$ in the Shutdown mode. This pin should be decoupled with a $0.1\mu F$ ceramic capacitor.

GND: Ground Pin.

ON/OFF: TTL/CMOS Compatible Shutdown Pin. A logic low puts the device in Shutdown mode, with receivers 4 and 5 kept alive and the supply current equal to $35\mu A$. All driver outputs and other receiver outputs are in high impedance state. This pin can not float.

V+: Positive Supply Output (RS232 Drivers). $V^+ \cong 2V_{CC} - 1V$. This pin requires an external capacitor $C = 0.1 \mu F$ for charge storage. The capacitor may be tied to ground or 5V.

With multiple devices, the V⁺ and V⁻ pins may be paralleled into common capacitors. For large numbers of devices, increasing the size of the shared common storage capacitors is recommended to reduce ripple.

V⁻: Negative Supply Output (RS232 Drivers). $V^- \approx 2V_{CC} - 1.5V$. This pin requires an external capacitor $C = 0.1 \mu F$ for charge storage.

C1+, C1-, C2+, C2-: Commutating Capacitor Inputs. These pins require two external capacitors $C = 0.1 \mu F$: one from C1+ to C1-, and another from C2+ to C2-. To maintain charge pump efficiency, the capacitor's effective series resistance should be less than 20Ω .

1349fa

PIN FUNCTIONS

DRIVER IN: RS232 Driver Input Pins. Inputs are TTL/CMOS compatible. Inputs should not be allowed to float. Tie unused inputs to V_{CC} .

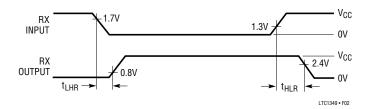
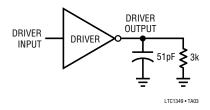
DRIVER OUT: Driver Outputs at RS232 Voltage Levels. Outputs are in a high impedance state when in Shutdown mode or $V_{CC} = 0V$. The driver outputs are protected against ESD to $\pm 10kV$ for human body model discharges.

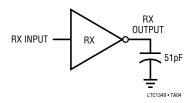
RX IN: Receiver Inputs. These pins can be forced to ± 25 V without damage. The receiver inputs are protected against ESD to ± 10 kV for human body model discharges. Each receiver provides 0.4V of hysteresis for noise immunity.

RX OUT: Receiver Outputs with TTL/CMOS Voltage Levels. Receiver 1, 2 and 3 outputs are in a high impedance state when in Shutdown mode to allow data line sharing. Receivers 4 and 5 are kept alive in Shutdown.

SWITCHING TIME WAVEFORMS

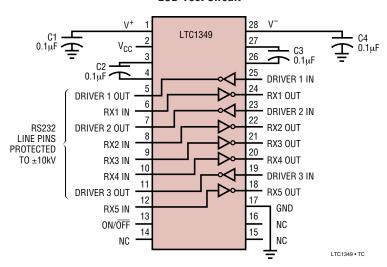
Figure 1. Driver Propagation Delay Timing


Figure 2. Receiver Propagation Delay Timing

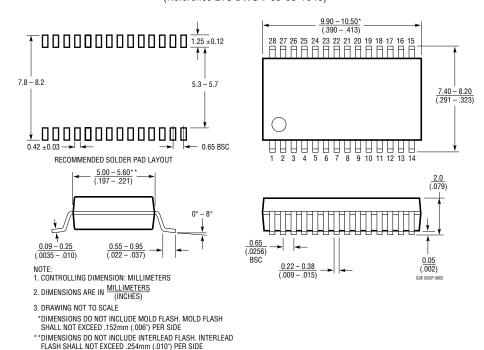
TEST CIRCUITS

Driver Timing Test Load



Receiver Timing Test Load

TEST CIRCUITS


ESD Test Circuit

PACKAGE DESCRIPTION

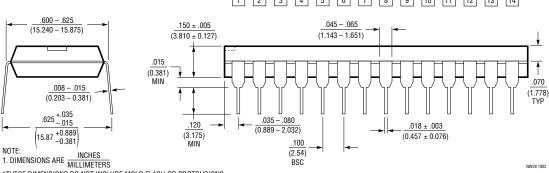
G Package 28-Lead Plastic SSOP (5.3mm)

(Reference LTC DWG # 05-08-1640)

NW Package 28-Lead PDIP (Wide .600 Inch)

(Reference LTC DWG # 05-08-1520)

(Reference LTC DWG # 05-08-1520)

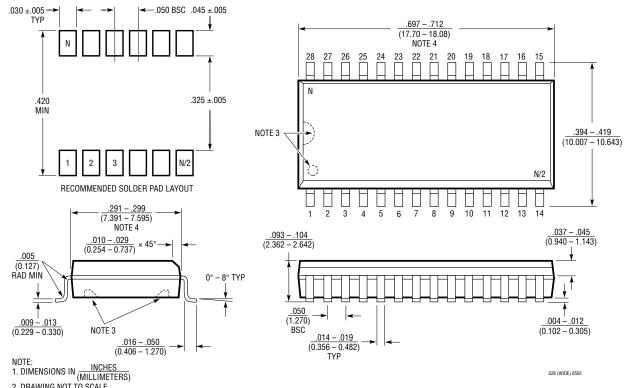

(36.957)

MAX

28 27 26 25 24 23 22 21 20 19 18 17 16 15

(12.827 - 14.224)

1 2 3 4 5 6 7 8 9 10 11 12 13 14


*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)

PACKAGE DESCRIPTION

SW Package 28-Lead Plastic Small Outline (Wide .300 Inch)

(Reference LTC DWG # 05-08-1620)

- 2. DRAWING NOT TO SCALE
 3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.
 THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS
 4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
- MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT®1137A	5V, 3 Driver, 5 Receiver RS232 Transceiver	±15kV ESD per IEC 1000-4
LTC1327	3.3V, 3 Driver, 5 Receiver RS562 Transceiver	300μA Supply Current, 0.2μA in Shutdown
LTC1337	5V, 3 Driver, 5 Receiver RS232 Transceiver	300μA Supply Current, 1μA in Shutdown
LTC1348	3.3V to 5V, 3 Driver, 5 Receiver RS232 Transceiver	True RS232 on 3.3V, 5 Receivers Active in Shutdown