Table 2. Pin Description

N°	Pin	Function	
1 to 3	NC	Internally not connected	
4	GND	0V supply	
5	Vdd	Power supply	
6	Vouty	Output Voltage	
7	ST	Self Test (Logic 0: normal mode; Logic 1: Self-test)	19
8	Voutx	Output Voltage	
9-13	NC	Internally not connected	7170
14	PD	Power Down (Logic 0: normal mode; Logic 1: Power-Down mode)	-doduct(S)
15	Voutz	Output Voltage	3
16	FS	Full Scale selection (Logic 0: 2g Full-scale; Logic 1: 6g Full-scale)	
17-18	Reserved	Leave unconnected	
19	NC	Internally not connected	
20	Reserved	Leave unconnected	
21	NC	Internally not connected	
22-23	Reserved	Leave unconnected	
24-25	NC	Internally not connected	
26	Reserved	Connect to Vdd or GND	
27	Reserved	Leave unconnected or connect to VL'4	
28	Reserved	Leave unconnected or cornect to GND	
29-44	NC	Internally not our nested	
	1		

Figure 3. Pin Connection (Tcoview)

2/9

Table 3. Electrical Characteristics

Symbol	Parameter	Test Condition	Min.	Typ. ¹	Max.	Unit
Vdd	Supply voltage		2.4	3.3	3.6	V
ldd	Supply current	mean value PD pin connected to GND		0.85	1.5	mA
IddPdn	Supply current in Power Down Mode	rms value PD pin connected to Vdd		2	5	μA
Voff	Zero-g level ²	T = 25°C	Vdd/2-10%	Vdd/2	Vdd/2+10%	V
OffDr	Zero-g level Vs temperature	Delta from +25°C		±1.5		mg/°C
Ar	Acceleration range ³	FS pin connected to GND	±1.8	±2.0		g
		FS pin connected to Vdd	±5.4	±6.0		y
So	Sensitivity ²	Full-scale = 2g	Vdd/5-10%	Vdd/5	Vúd/⊽+1)%	V/g
		Full-scale = 6g	Vdd/15-10%	Vd4:/:15	'au/15+10%	V/g
SoDr	Sensitivity drift Vs temperature	Delta from +25°C	>0	±1.01		%/°C
NL	Non Linearity ⁴	Best fit straight line Full-scale = 2g X, Y axis	40	±0.3	±1.5	% FS
		Best fit straight line; Full-scale = 2(, Z atis	B	±0.6	±2	% FS
CrossAx	Cross-Axis ⁵	5		±2	±4	%
fuc	Sensing Element Rcso 12.11	X, Y axis	3.2	4.0	4.8	KHz
	Frequency ⁶	Z axis	1.8	2.5	3.2	KHz
an	Acceleration noise density	Vdd=3.3V; Full-scale = 2g		50		μg/ √Hz
Vt	5 ei. iest output voltage delta change ^{7,8,9}	T = 25°C Vdd=3.3V Full-scale = 2g X axis	-20	-40		mV
ete		T = 25°C Vdd=3.3V Full-scale = 2g Y axis	20	40		mV
		T = 25°C Vdd=3.3V Full-scale = 2g Z axis	20	50		mV

(Temperature range -40°C to +85°C) All the parameters are specified @ Vdd =3.3V, T=25°C unless otherwise noted

57

Table 3. Electrical Characteristics (continued)

(Temperature range -40°C to +85°C) All the parameters are specified @ Vdd =3.3V, T=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Typ. ¹	Max.	Unit	
Vst	Self test input	Logic 0 level	0		0.8	V	
		Logic 1 level	2.2		Vdd	V	
Rout	Output impedance		80	110	140	kΩ	
Cload	Capacitive load drive ¹⁰		320			pF	*(5
Ton	Turn-On Time at exit from Power Down mode	Cload in µF		550*Cload +0.3		ms	AUGL
5. Ci 6. Gi 7. Si 8. Si 9. W 10.Ba	uaranteed by design through measu ontribution to the measuring output of uaranteed by design elf test "output voltage delta change elf test "output voltage delta change /hen full-scale is set to 6g, self-test " andwidth=1/(2*π*110KΩ*Cload)	of the inclination/accelerat " is defined as Vout _{(Vst=Lor} " varies cubically with sup	_{gic1)} -Vout _{(Vst=Logic0} ply voltage))	350th	101	
	above those listed as "absolu s rating only and functional or						

ABSOLUTE MAXIMUM RATING

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may af. act device reliability.

Table 4. Absolute Maximum Rating

	Symbol	R iti.\gs	Maximum Value	Unit
	Vdd	Supply voltage	-0.3 to 7	V
	Vin	Input voltage c: and control pin (FS, PD, ST)	-0.3 to Vdd +0.3	V
	A _{POW}	Acceler'aux n 'Arry axis, Powered, Vdd=3.3V)	3000g for 0.5 ms	
		25	10000g for 0.1 ms	
	AL VP	Coeleration (Any axis, Unpowered)	3000g for 0.5 ms	
	0,0		10000g for 0.1 ms	
-0	Тор	Operating Temperature Range	-40 to +85	°C
- S	T _{STG}	Storage Temperature Range	-40 to +105	°C
N	ESD	Electrostatic discharge protection	2KV HBM	
		1	1	1

57

3 FUNCTIONALITY

The LIS3L02AQ is a low-cost, low-power, analog output three-axis linear accelerometer packaged in QFN pack-age. The complete device includes a sensing element and an IC interface able to take the information from the sensing element and to provide an analog signal to the external world.

3.1 Sensing element

The THELMA process is utilized to create a surface micro-machined accelerometer. The technology allows to (B)POUCILS carry out suspended silicon structures which are attached to the substrate in a few points called anchors and free to move on a plane parallel to the substrate itself. To be compatible with the traditional packaging techniques a cap is placed on top of the sensing element to avoid blocking the moving parts during the molding phase.

The equivalent circuit for the sensing element is shown in the figure below; when a linear acceleration is applied, the proof mass displaces from its nominal position, causing an imbalance in the capacitive half-bridge. This imbalance is measured using charge integration in response to a voltage pulse applied to the sense capacitor.

The nominal value of the capacitors, at steady state, is few pF and when an acceleration is applied the maximum variation of the capacitive load is few hundredths of pF.

3.2 IC Interface

The complete signal processing uses a fully differential structure, while the final stage converts the differential signal into a single-ended one to be compatible with the external world.

The first stage is a low-noise capacitive amplifier that implements a Correlated Double Sampling (CDS) at its output to cancel the offset and the 1/f noise. The produced signal is then sent to three different S&Hs, one for each channel, and made available to the outside.

The low noise input amplifier operates at 200 kHz while the three S&Hs operate at a sampling frequency of 66 kHz. This allows a large oversampling ratio, which leads to in-band noise reduction and to an accurate output waveform.

BADductle All the analog parameters (output offset voltage and sensitivity) are ratiometric to the voltage supply. Increasing or decreasing the voltage supply, the sensitivity and the offset will increase or decrease linearly. The feature provides the cancellation of the error related to the voltage supply along an analog to digital conversion chain.

3.3 Factory calibration

The IC interface is factory calibrated to provide to the final user a device ready to operate.

The trimming values are stored inside the device by a non volatile structure. Any time the device sturned on, .oration. .orati the trimming parameters are downloaded into the registers to be employed during the normal of eration thus

6/9

4 PACKAGE INFORMATION

Figure 5. QFN-44 Mechanical Data & Package Dimensions

Date	Revision	Description of Changes
January 2004	1	First Issue
February 2004	2	Values of some parameters has been changed in Electrical characteristics table.
November 2004	3	Modified/added some values in the table 2 Electrical characteristics.
November 2004	4	Corrected few typo errors.
	HaletR	First Issue Values of some parameters has been changed in Electrical characteristics table. Modified/added some values in the table 2 Electrical characteristics. Corrected few typo errors. Corrected few typo errors.

57

Informat: in the initial is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of tisse of such information nor for any infragment of patter is of third patter which may result for mits use. No Inconse is granted by implication or horizons and replaces all information provides are and an explored to third patter or the institute of third STMicroelectronics. Specifications mentioned in the subject to the subject to their patter or patter information mentioned in the subject and reliable. However, information provides and information provides and and the subject to their patter or patter information provides and provides and reliable. STMicroelectronics. Specifications mentioned in the subject to the subject to the subject or the subject or patter information provides and reliable. STMicroelectronics. State information provides are not an adjusted to patter or patter in the subject or patter information provides and reliable. STMicroelectronics. State information provides are not associated and the subject or patter information provides are system without express without express are subject or patter or patter information provides are not associated and the subject or patter information provides are not associated and the subject or patter information provides are not associated and the subject or patter information provides are not associated and the subject or patter information provides are not associated and the subject or patter information provides are not associated and the subject or patter information provides are not associated and the subject or patter information provides are not associated and the advector information provides are not advectore information pro

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

9/9