2N3019, 2N3019S, 2N3700

80V, 1A NPN Small Signal Transistor

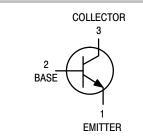
Features

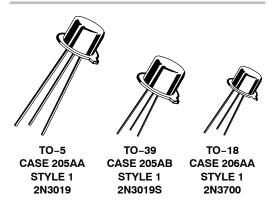
- MIL-PRF-19500/391 Qualified
- Available as JAN, JANTX, and JANTXV

MAXIMUM RATINGS (T_A = 25° C unless otherwise noted)

, , , , , , , , , , , , , , , , , , , ,				
Characteristic	Symbol	Value	Unit	
Collector – Emitter Voltage	V _{CEO}	80	Vdc	
Collector – Base Voltage	V _{CBO}	140	Vdc	
Emitter – Base Voltage	V _{EBO}	7.0	Vdc	
Collector Current – Continuous	Ι _C	1.0	Adc	
Total Device Dissipation @ T _A = 25°C 2N3019, 2N3019S 2N3700	P _T	800 500	mW	
Total Device Dissipation @ T _C = 25°C 2N3019, 2N3019S 2N3700	P _T	5.0 1.0	W	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C	

THERMAL CHARACTERISTICS

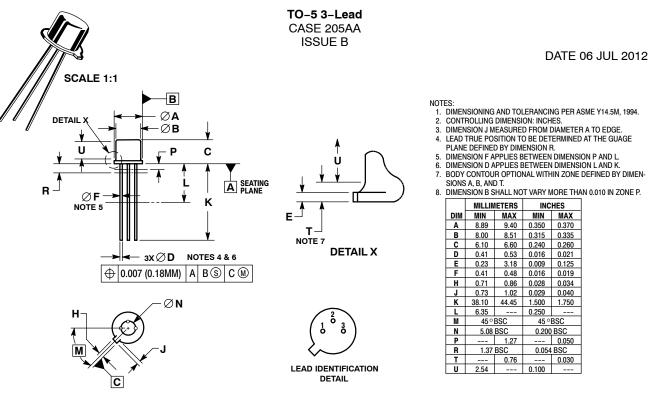

Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Ambient 2N3019, 2N3019S 2N3700	$R_{ heta JA}$	195 325	°C/W
Thermal Resistance, Junction to Case 2N3019, 2N3019S 2N3700	$R_{ heta JC}$	30 150	°C/W


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION


Device	Package	Shipping
JAN2N3019		
JANTX2N3019	TO-5	Bulk
JANTXV2N3019		
JAN2N3019S		
JANTX2N3019S	TO-39	Bulk
JANTXV2N3019S		
JAN2N3700		
JANTX2N3700	TO-18	Bulk
JANTXV2N3700		

2N3019, 2N3019S, 2N3700

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS		•		•
Collector – Emitter Breakdown Voltage $(I_C = 30 \text{ mAdc})$	V _(BR) CEO	80	-	Vdc
Emitter-Base Cutoff Current ($V_{EB} = 5.0 \text{ Vdc}$) ($V_{EB} = 7.0 \text{ Vdc}$)	I _{EBO}		10 10	nAdc μAdc
Collector-Emitter Cutoff Current (V _{CE} = 90 Vdc)	I _{CEO}	-	10	nAdc
Collector-Base Cutoff Current (V _{CB} = 140 Vdc)	I _{CBO}	_	10	μAdc
ON CHARACTERISTICS (Note 1)				
$ \begin{array}{l} \text{DC Current Gain} \\ (I_{C} = 0.1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}) \\ (I_{C} = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}) \\ (I_{C} = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}) \\ (I_{C} = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}) \\ (I_{C} = 1.0 \text{ Adc}, V_{CE} = 10 \text{ Vdc}) \\ (I_{C} = 1.0 \text{ Adc}, V_{CE} = 10 \text{ Vdc}) \end{array} $	h _{FE}	50 90 100 50 15	300 - 300 300 -	_
Collector – Emitter Saturation Voltage $(I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc})$ $(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	V _{CE(sat)}		0.2 0.5	Vdc
Base – Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)	V _{BE(sat)}	_	1.1	Vdc
SMALL-SIGNAL CHARACTERISTICS	·			
Magnitude of Small–Signal Current Gain (I _C = 50 mAdc, V _{CE} = 10 Vdc, f = 20 MHz)	h _{fe}	5.0	20	-
Small–Signal Current Gain ($I_C = 1.0 \text{ mAdc}, V_{CE} = 5 \text{ Vdc}, f = 1 \text{ kHz}$)	h _{fe}	80	400	-
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, 100 kHz \leq f \leq 1.0 MHz)	C _{obo}	-	12	pF
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, 100 kHz \leq f \leq 1.0 MHz)	C _{ibo}	_	60	pF
Noise Figure (V _{CE} = 10 Vdc, I _C = 100 μ Adc, R _g = 1 k Ω , PBW = 200 Hz)	NF	_	4.0	dB
Collector-Base Time Constant (V _{CB} = 10 Vdc, I _C = 10 mAdc, f = 79.8 MHz)	r' _b ,C _C	_	400	ps
SWITCHING CHARACTERISTICS	·			
Pulse Response (Reference Figure in MIL-PRF-19500/391)	t _{on} + t _{off}	_	30	ns
1. Pulse Test: Pulse Width = 300 us. Duty Cycle < 2.0%.	·	•	•	•

1. Pulse Test: Pulse Width = 300 $\mu s,$ Duty Cycle \leq 2.0%.

STYLE 1: PIN 1. EMITTER 2. BASE 3. COLLECTOR

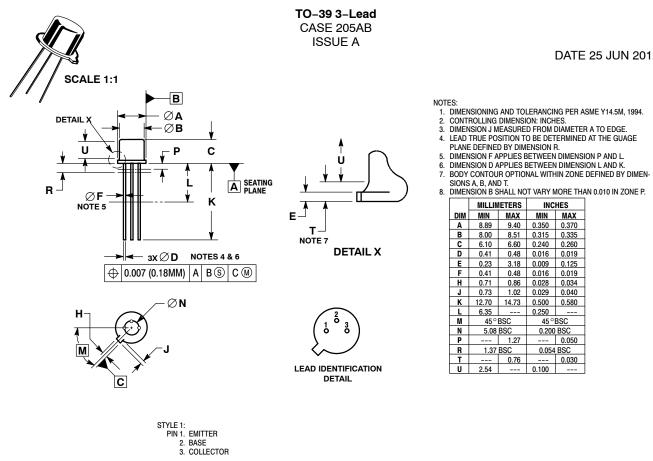
DATE 06 JUL 2012

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	8.89	9.40	0.350	0.370
В	8.00	8.51	0.315	0.335
С	6.10	6.60	0.240	0.260
D	0.41	0.53	0.016	0.021
Е	0.23	3.18	0.009	0.125
F	0.41	0.48	0.016	0.019
Н	0.71	0.86	0.028	0.034
J	0.73	1.02	0.029	0.040
Κ	38.10	44.45	1.500	1.750
L	6.35		0.250	
М	45°	BSC	45 °	BSC
Ν	5.08	5.08 BSC		BSC
Ρ		1.27		0.050
R	1.37 BSC		0.054	BSC
Т		0.76		0.030
U	2.54		0.100	

DOCUMENT NUMBER:	98AON49138E	Electronic versions are uncontrolle	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except	
NEW STANDARD:		"CONTROLLED COPY" in red.	
DESCRIPTION:	TO-5 3-LEAD		PAGE 1 OF 2

DOCUMENT NUMBER: 98AON49138E

PAGE 2 OF 2


ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION. REQ. BY B. JENSEN.	18 MAR 2010
A	CHANGED DIMENSION "D" MAX TO 0.53 MM (0.021 IN). REQ. BY B. JENSEN.	10 AUG 2010
В	MADE ISOMETRIC IMAGE LARGER TO REFLECT ACTUAL SIZE. REQ. BY J. FULTON.	06 JUL 2012
	l de la constante de	1

ON Semiconductor and with a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use using SCILLC as neglicate to all applicable copyright laws and is not for resale in any manner.

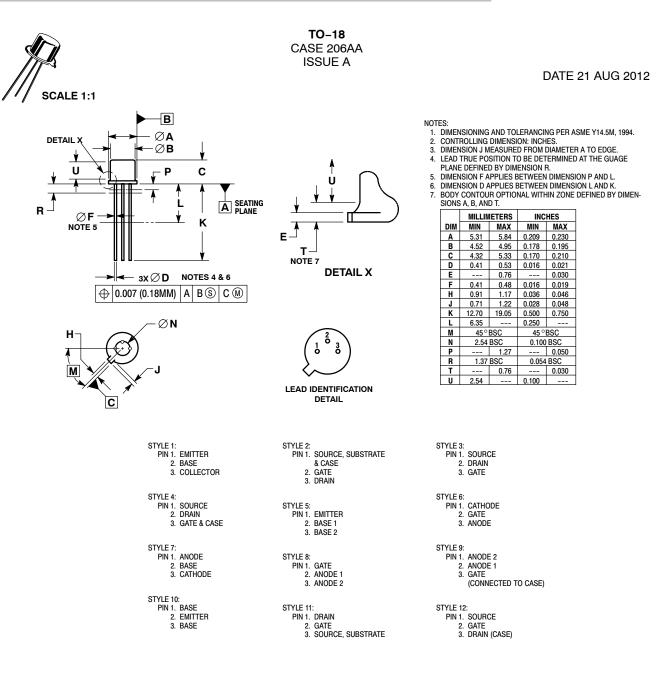
© Semiconductor Components Industries, LLC, 2012 July, 2012 – Rev. B

Downloaded from Arrow.com.

DATE 25 JUN 2012

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	8.89	9.40	0.350	0.370
В	8.00	8.51	0.315	0.335
C	6.10	6.60	0.240	0.260
D	0.41	0.48	0.016	0.019
E	0.23	3.18	0.009	0.125
F	0.41	0.48	0.016	0.019
H	0.71	0.86	0.028	0.034
J	0.73	1.02	0.029	0.040
K	12.70	14.73	0.500	0.580
L	6.35		0.250	
M	45°BSC		45°	BSC
N	5.08	5.08 BSC		BSC
Р		1.27		0.050
R	1.37 BSC		0.054	BSC
T		0.76		0.030
U	2.54		0.100	

DOCUMENT NUMBER:	98AON49134E	Electronic versions are uncontrolled excep	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except	
NEW STANDARD:		"CONTROLLED COPY" in red.	
DESCRIPTION:	TO-39 3-LEAD		PAGE 1 OF 2


PAGE 2 OF 2

	1	1
ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION. REQ. BY B. JENSEN.	18 MAR 2010
A	MADE ISOMETRIC IMAGE LARGER TO REFLECT ACTUAL SIZE. REQ. BY J. FULTON.	25 JUN 2012

ON Semiconductor and we registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

Downloaded from Arrow.com.

DOCUMENT NUMBER:	98AON45207E	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION: TO-18 3-LEAD PAGE 1 O		PAGE 1 OF 1			
ON Semiconductor reserves the right the suitability of its products for any pa	ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the				

© Semiconductor Components Industries, LLC, 2019

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥