

Block Diagram

Pin	Symbol	Function	
1	OUT	Output to the load	
2	GND	Logic ground	
3	IN	Input, activates the power switch in case of logic high signal	
4	Vbb	Positive power supply voltage	

Maximum Ratings

Parameter	Symbol	Value	Unit
at $T_j = 25$ °C, unless otherwise specified			
Supply voltage	$V_{\rm bb}$	-0,3 ¹⁾ 48	V
Continuous input voltage ²⁾	V_{IN}	-10 <i>V</i> _{bb}	
Load current (Short - circuit current, see page 5)	/ _L	self limited	Α
Current through input pin (DC)	I _{IN}	±5	mA
Reverse current through GND-pin ³⁾	-I _{GND}	-0.5	А
Junction temperature	$T_{\rm j}$	internal limited	°C
Operating temperature	Ta	-30+85	°C
Storage temperature	$T_{\rm stg}$	-40 +105	°C
Power dissipation ⁴⁾	P _{tot}	1.4	W
Inductive load switch-off energy dissipation ⁴⁾⁵⁾	E _{AS}	0.16	J
single pulse			
$T_{\rm j}$ = 125 °C, $I_{\rm L}$ = 1 A			
Load dump protection ⁵⁾ $V_{\text{LoadDump}}^{6)} = V_A + V_S$	V _{Loaddump}		V
$R_{\rm I}$ =2 Ω , $t_{\rm d}$ =400ms, $V_{\rm IN}$ = low or high, $V_{\rm A}$ =13,5V	'		
R_{L} = 47 Ω		83	
Electrostatic discharge voltage (Human Body Model)	V _{ESD}		kV
according to ANSI EOS/ESD - S5.1 - 1993			
ESD STM5.1 - 1998			
Input pin		±1	
All other pins		±5	

 $^{^{1}}$ defined by P_{tot}

 $^{^{2}}$ At V_{IN} > Vbb, the input current is not allowed to exceed ±5 mA.

 $^{^3}$ defined by $P_{ ext{tot}}$

 $^{^4}$ Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70 μ m thick) copper area for V_{bb} connection. PCB is vertical without blown air.

⁵not subject to production test, specified by design

 $^{^6} V_{
m Loaddump}$ is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 .

Supply voltages higher than $V_{\text{bb}(AZ)}$ require an external current limit for the GND pin, e.g. with a 150 Ω resistor in GND connection. A resistor for the protection of the input is integrated.

Electrical Characteristics

Parameter	Symbol	Values		Unit	
at $T_{\rm j}$ = -40125 °C, $V_{\rm bb}$ = 1530 V unless otherwise specified		min.	typ.	max.	
Thermal Characteristics					
Thermal resistance @ min. footprint	R _{th(JA)}	-	-	125	K/W
Thermal resistance @ 6 cm ² cooling area ¹⁾	$R_{\rm th(JA)}$	-	-	70	
Thermal resistance, junction - soldering point	R_{thJS}	-	-	7	K/W
Load Switching Capabilities and Characteristics					
On-state resistance	R _{ON}				mΩ
$T_{\rm j}$ = 25 °C, $I_{\rm L}$ = 0.5 A		-	150	200	
T _j = 125 °C		-	270	320	
Nominal load current ²⁾	I _{L(nom)}	1.4	-	-	Α
Device on PCB 1)	, ,				
Turn-on time to 90% <i>v</i> _{OUT}	<i>t</i> on				μs
$R_{\rm L}$ = 47 Ω , $V_{\rm IN}$ = 0 to 10 V		-	50	100	
Turn-off time to 10% V _{OUT}	$t_{\rm Off}$				
$R_{\rm L}$ = 47 Ω , $V_{\rm IN}$ = 10 to 0 V		-	75	150	
Slew rate on 10 to 30% V _{OUT} ,	dV/dt _{on}				V/µs
$R_{L} = 47 \ \Omega, \ V_{bb} = 15 \ V$		-	1	2	
Slew rate off 70 to 40% V _{OUT} ,	-dV/dt _{off}				
$R_{\rm L}$ = 47 Ω , $V_{\rm bb}$ = 15 V		-	1	2	

 $^{^{1}}$ Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70 μ m thick) copper area for V_{bb} connection. PCB is vertical without blown air.

 $^{^2\}mbox{Nominal load current is limited by the current limitation (see page 5)$

FIC	octrica	l Cha	racto	ristics
	:Curica	ı Gna	racie	risucs

Parameter	Symbol	Values			Unit
at T_i = -40125 °C, V_{bb} = 1530 V unless otherwise specified		min.	typ.	max.	
Operating Parameters			•	•	•
Operating voltage	V _{bb(on)}	12	-	45	V
Undervoltage shutdown	V _{bb(under)}	7	-	10.5	
Undervoltage restart	V _{bb(u rst)}	-	-	11	
Undervoltage hysteresis	$\Delta V_{ m bb(under)}$	-	0.5	_	
$\Delta V_{\text{bb(under)}} = V_{\text{bb(u rst)}} - V_{\text{bb(under)}}$					
Standby current	I _{bb(off)}				μΑ
$T_{\rm j}$ = -4085 °C, $V_{\rm IN} \le 1.2 \text{ V}$		-	10	25	
$T_{\rm j} = 125 ^{\circ}{\rm C}^{1}$		-	-	50	
Operating current	I _{GND}	-	1	1.6	mA
Leakage output current (included in Ibb(off))	I _{L(off)}	-	3.5	10	μΑ
$V_{\text{IN}} \le 1.2 \text{ V}$					
Protection Functions ²⁾					
Initial peak short circuit current limit	I _{L(SCp)}				Α
$T_{\rm j}$ = -40 °C, $V_{\rm bb}$ = 20 V, $t_{\rm m}$ = 150 $\mu {\rm s}$		-	-	4.5	
T _j = 25 °C		-	3	_	
T _j = 125 °C		1.4	_	-	
Repetitive short circuit current limit	I _{L(SCr)}	-	2.2	-	
T _j = T _{jt} (see timing diagrams)					
Output clamp (inductive load switch off)	V _{ON(CL)}	62	68	-	V
at $V_{OUT} = V_{bb} - V_{ON(CL)}$, $I_{bb} = 4 \text{ mA}$					
Overvoltage protection 3)	V _{bb(AZ)}	47	_	-	
$I_{\rm bb} = 4 \text{ mA}$					
Thermal overload trip temperature ⁴⁾	T_{it}	135	-	-	°C
Thermal hysteresis	ΔT_{it}	_	10	_	K

¹higher current due temperature sensor

²Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation

 $^{^3}$ see also $V_{\mbox{ON(CL)}}$ in circuit diagram

⁴ higher operating temperature at normal function available

Electrical Characteristics

Parameter	Symbol		Values	}	Unit
at $T_{\rm j}$ = -40125 °C, $V_{\rm bb}$ = 1530 V unless otherwise specified		min.	typ.	max.	
Input			•		
Continuous input voltage ¹⁾	V_{IN}	-102)	-	$V_{\rm bb}$	V
Input turn-on threshold voltage	V _{IN(T+)}	-	-	3.0	
Input turn-off threshold voltage	$V_{IN(T-)}$	1.82	-	-	
Input threshold hysteresis	$\Delta V_{\rm IN(T)}$	-	0.2	-	
Off state input current	I _{IN(off)}				μΑ
$V_{\text{IN}} \leq 1.8 \text{ V}$, ,	20	-	-	
On state input current	I _{IN(on)}	-	-	110	
Input delay time at switch on $V_{ m bb}$	t _{d(Vbbon)}	150	340	-	μs
Input resistance (see page 8)	R_{I}	1.5	3	5	kΩ
Reverse Battery					
Reverse battery voltage ³⁾²⁾	-V _{bb}				V
$R_{\text{GND}} = 0 \ \Omega$		-	_	0.3	
R_{GND} = 150 Ω		-	-	45	
Continuous reverse drain current ²⁾	IS	-	-	1	Α
T _j = 25 °C					
Drain-source diode voltage ($V_{OUT} > V_{bb}$) $I_F = 1 \text{ A}$	-V _{ON}	-	0.6	1.2	V

¹At V_{IN} > Vbb, the input current is not allowed to exceed ±5 mA.

²not subject to production test, guaranted by design

 $^{^{3}}$ defined by P_{tot}

EMC-Characteristics

All EMC-Characteristics are based on limited number of sampels and no part of production test.

Test Conditions:

If not other specified the test circuitry is the minimal functional configuration without any external components for protection or filtering.

Supply voltage: $V_{bb} = 13.5V$ Temperature: $T_a = 23 \pm 5^{\circ}C$;

Load: $R_{\rm I} = 220\Omega$

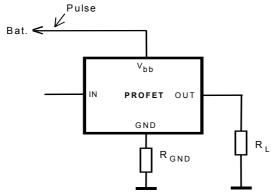
Operation mode: PWM Frequency: 100Hz / Duty Cycle: 50%

DC On/Off

DUT-Specific.: R_{GND}

Fast electrical transients

Acc. ISO 7637

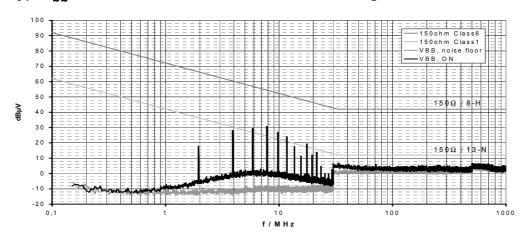

Test Pulse	Test Level	Test R	esults	Pulse Cycle Time and
		On	Off	Generator Impedance
1	-200 V	С	С	500ms ; 10Ω
2	+200 V	С	С	500ms ; 10Ω
3a	-200 V	С	С	100ms ; 50 Ω
3b	+ 200 V	С	С	100ms ; 50 Ω
41)	-7 V	С	С	0,01Ω
5	175 V	E (70V)	E (70V)	400ms ; 2Ω

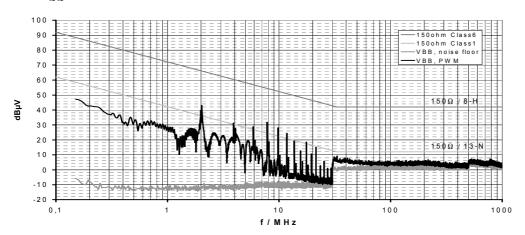
The test pulses are applied at $V_{\rm bb}$

Definition of functional status

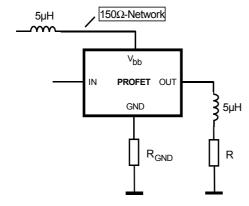
Class	Content
С	All functions of the device are performed as designed after exposure to disturbance.
E	One or more function of a device does not perform as designed after exposure
	and can not be returned to proper operation without repairing or replacing the
	device. The value after the character shows the limit.

Test circuit:


¹Supply voltage V_{bb} = 12 V instead of 13,5 V.


Conducted Emission

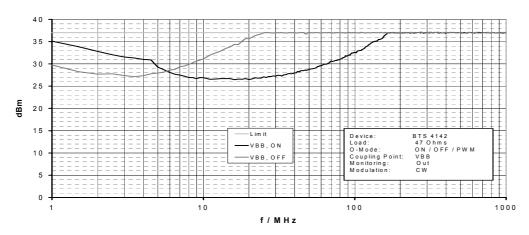
Acc. IEC 61967-4 (1Ω / 150Ω method)


Typ. V_{bb} -Pin Emission at DC-On with 150 Ω -matching network

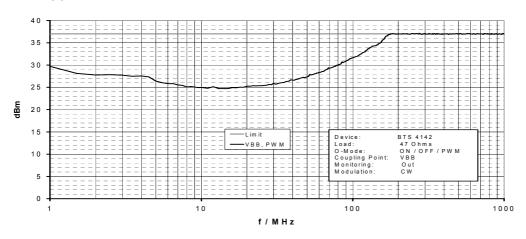
Typ. V_{bb} -Pin Emission at PWM-Mode with 150 Ω -matching network

Test circuit:

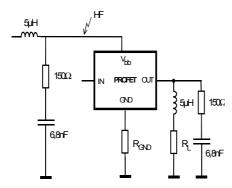
For defined decoupling and high reproducibility a defined choke (5 μ H at 1 MHz) is inserted between supply and V_{bb} -pin.


Conducted Susceptibility

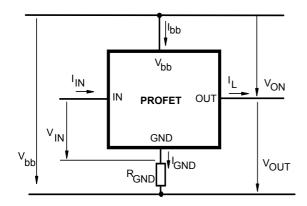
Acc. 47A/658/CD IEC 62132-4 (Direct Power Injection)

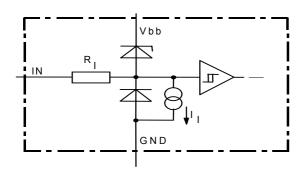

Direct Power Injection: Forward Power CW

Failure criteria: Amplitude and frequency deviation max. 10% at Out

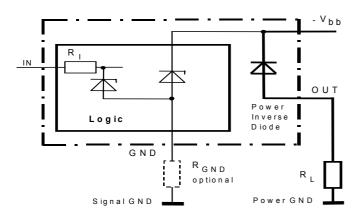

Typ. Vbb-Pin Susceptibility at DC-On/Off

Typ. V_{bb}-Pin Susceptibility at PWM-Mode


Test circuit:

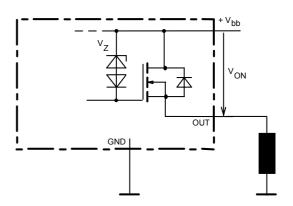

For defined decoupling and high reproducibility the same choke and the same 150Ω -matching network as for the emission measurement is used.

Terms

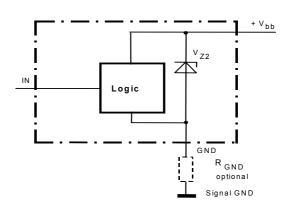


Input circuit (ESD protection)

The use of ESD zener diodes as voltage clamp at DC conditions is not recommended

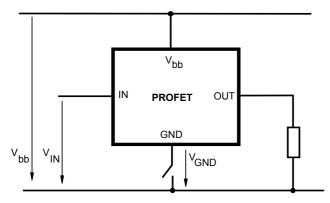

Reverse battery protection

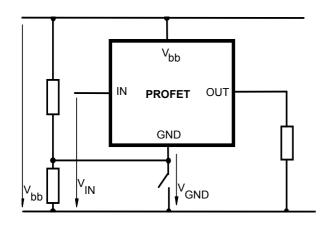
 R_{GND} =150 Ω , R_{I} =3 $k\Omega$ typ.,


Temperature protection is not active during inverse current

Inductive and overvoltage output clamp

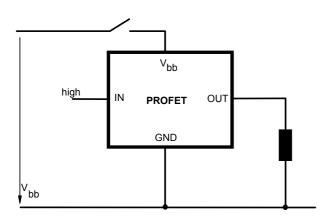
 V_{ON} clamped to 63 V min.


Overvoltage protection of logic part


 V_{Z2} = $V_{bb(AZ)}$ =47V min., R_I=3 k Ω typ., R_{GND}=150 Ω

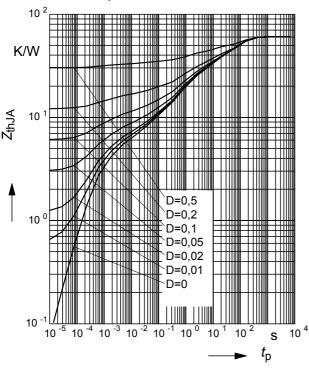
GND disconnect

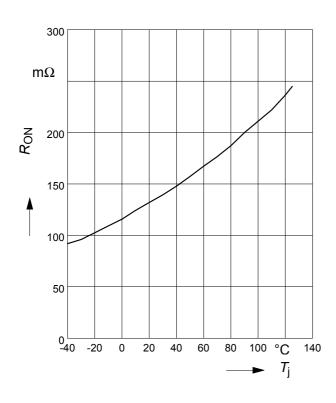
GND disconnect with GND pull up


Inductive Load switch-off energy dissipation

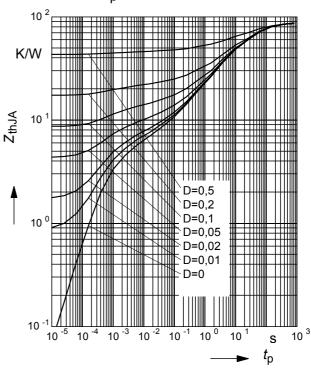
Energy stored in load inductance: $E_L = \frac{1}{2} * L * I_L^2$ While demagnetizing load inductance, the energy dissipated in PROFET is $E_{AS} = E_{bb} + E_L - E_R = V_{ON(CL)} * i_L(t) dt$, with an approximate solution for $R_I > 0\Omega$:

$$E_{AS} = \frac{I_L * L}{2 * R_L} * (V_{bb} + |V_{OUT(CL)|}) * \ln(1 + \frac{I_L * R_L}{|V_{OUT(CL)}|})$$

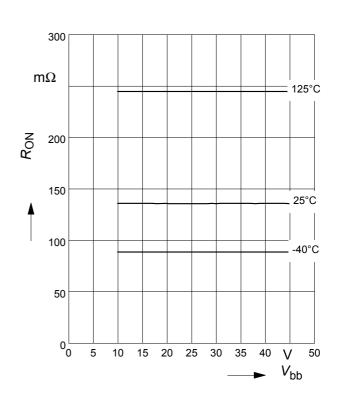

V_{bb} disconnect with charged inductive load


Typ. transient thermal impedance $Z_{\text{thJA}} = f(t_{\text{p}}) @ 6 \text{cm}^2 \text{ heatsink area}$

Parameter: $D=t_{D}/T$

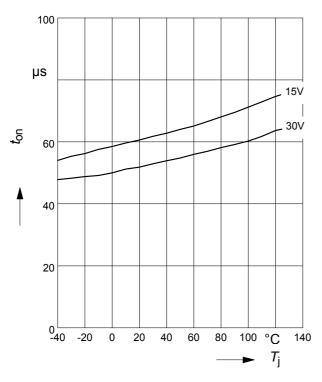

Typ. on-state resistance

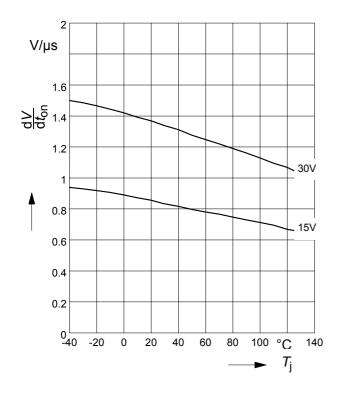
$$R_{ON} = f(T_j)$$
; $V_{bb} = 15 \text{ V}$; $V_{in} = \text{high}$


Typ. transient thermal impedance $Z_{\text{thJA}} = f(t_p)$ @ min. footprint

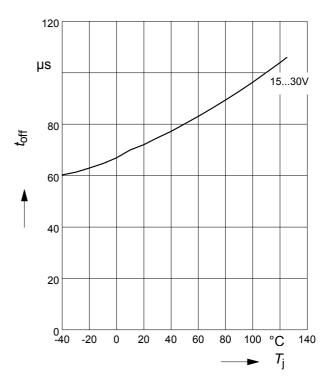
Parameter: $D=t_D/T$

Typ. on-state resistance

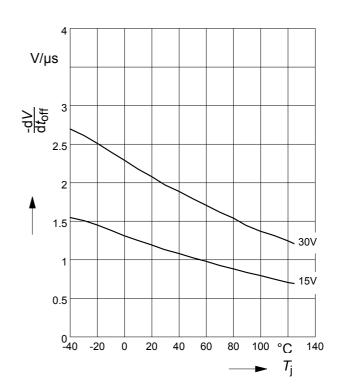

$$R_{ON} = f(V_{bb}); I_L = 0.5A; V_{in} = high$$


Typ. turn on time

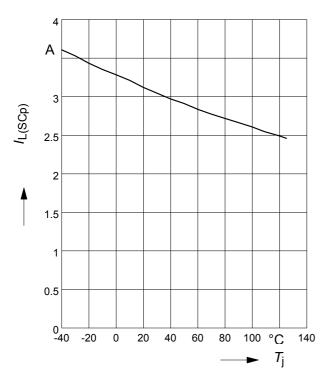
$$t_{on} = f(T_j); R_L = 47\Omega$$


Typ. slew rate on

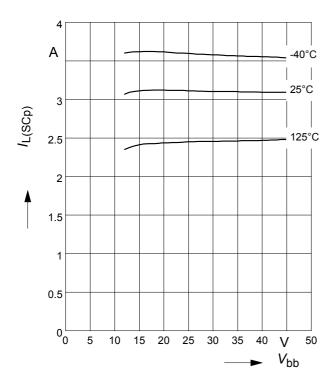
$$dV/dt_{on} = f(T_j)$$
; $R_L = 47 \Omega$

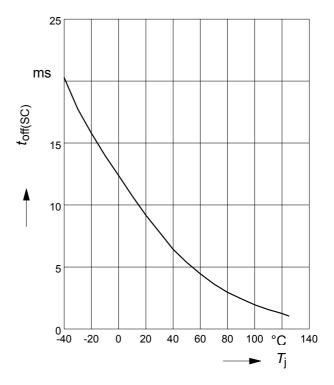

Typ. turn off time

$$t_{\text{off}} = f(T_j); R_L = 47\Omega$$

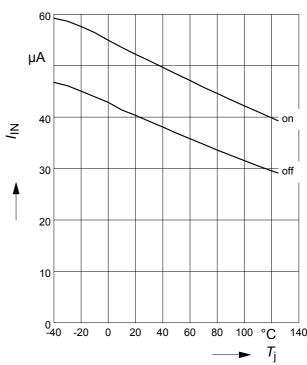

Typ. slew rate off

$$dV/dt_{off} = f(T_j); R_L = 47 \Omega$$




Typ. initial peak short circuit current limit $I_{L(SCp)} = f(T_j)$; $V_{bb} = 20V$; $t_m = 150 \mu s$

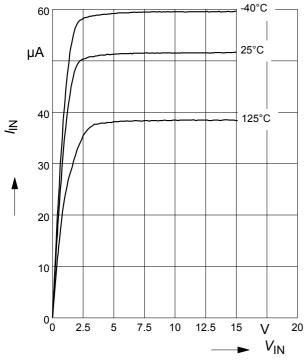
Typ. initial peak short circuit current limit $I_{L(SCp)} = f(V_{bb}); t_m = 150 \mu s$



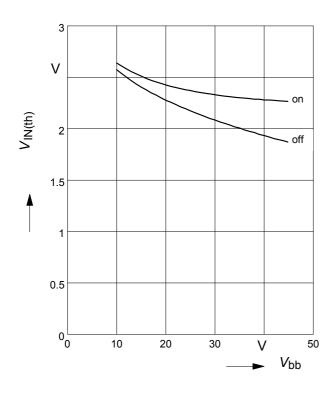
Typ. initial short circuit shutdown time $t_{off(SC)} = f(T_{j,start})$; $V_{bb} = 20V$

Typ. input current

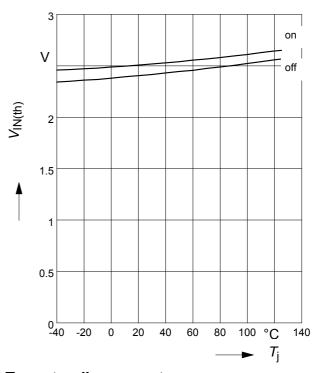
 $I_{\text{IN(on/off)}} = f(T_j); V_{\text{bb}} = 15 \text{ V}; V_{\text{IN}} = \text{low/high}$ $V_{\text{INlow}} \le 1.8 \text{V}; V_{\text{INhigh}} = 5 \text{V}$



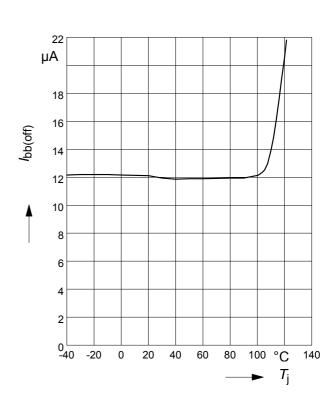
2006-03-09


Typ. input current

$$I_{IN} = f(V_{IN}); V_{bb} = 15 V$$

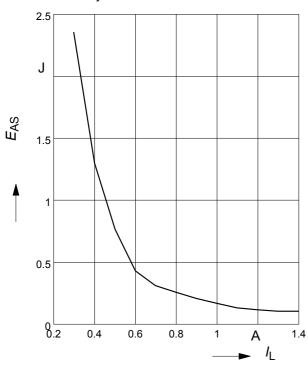

Typ. input threshold voltage

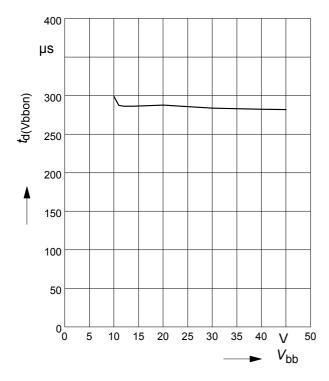
$$V_{\text{IN(th)}} = f(V_{\text{bb}})$$
; $T_{\text{j}} = 25^{\circ}\text{C}$


Typ. input threshold voltage

$$V_{\text{IN(th)}} = f(T_{\text{j}})$$
; $V_{\text{bb}} = 15 \text{ V}$

Typ. standby current


$$I_{bb(off)} = f(T_j)$$
; $V_{bb} = 32V$; $V_{IN} \le 1.2 V$



Maximum allowable inductive switch-off energy, single pulse

$$E_{AS} = f(I_L); T_{jstart} = 125$$
°C



Typ. input delay time at switch on $V_{\rm bb}$ $t_{\rm d(Vbbon)}$ = f($V_{\rm bb}$)

Typ. leakage current

$$I_{L(off)} = f(T_j)$$
; $V_{bb} = 32V$; $V_{IN} \le 1.2 V$

Timing diagrams

Figure 1a: Vbb turn on:

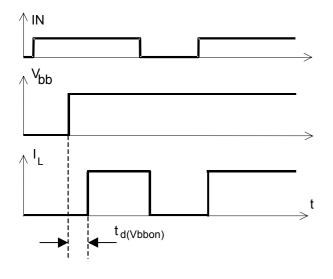
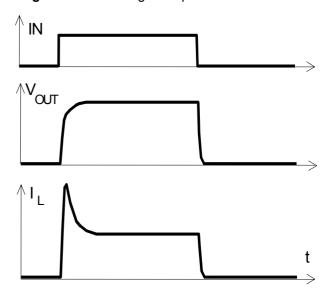



Figure 2b: Switching a lamp

Figure 2a: Switching a resistive load, turn-on/off time and slew rate definition

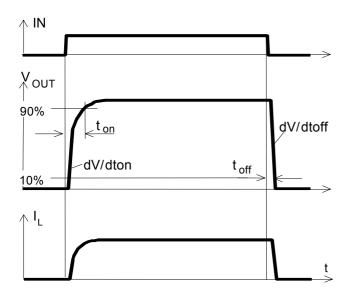
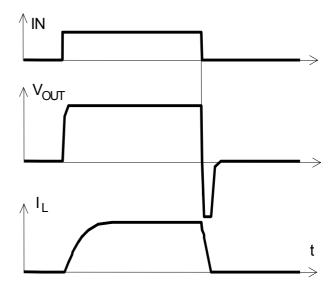
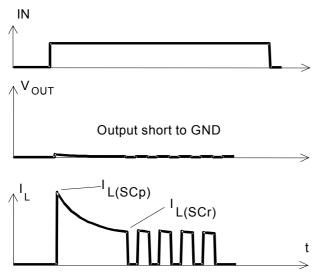




Figure 2c: Switching an inductive load

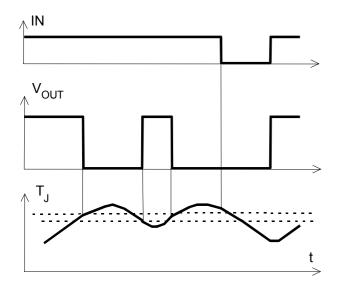


Figure 3a: Turn on into short circuit, shut down by overtemperature, restart by cooling

Heating up of the chip may require several milliseconds, depending on external conditions.

Figure 4: Overtemperature: Reset if $T_j < T_{jt}$

Figure 3b: Short circuit in on-state shut down by overtemperature, restart by cooling

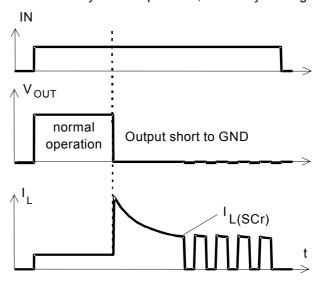
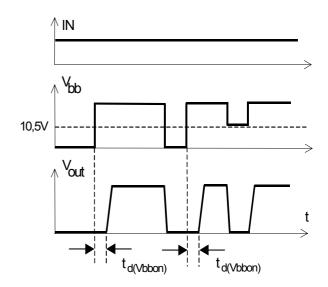
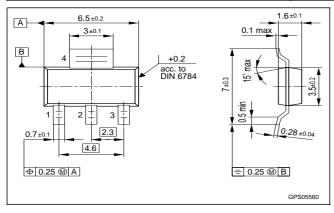



Figure 5: Undervoltage shutdown and restart



Package and ordering code

all dimensions in mm

Sales code	ITS 4142N
Ordering code, standard (1000 pcs.)	SP000221218

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81669 München © Infineon Technologies AG 2001 All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.