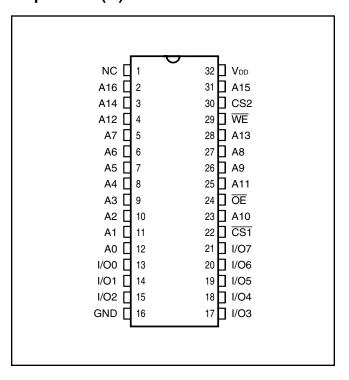


PIN CONFIGURATION 36-pin mini BGA (B) (6mm x 8mm)


32-pin TSOP (TYPE I) (T), 32-pin sTSOP (TYPE I) (H)

PIN DESCRIPTIONS

A0-A16	Address Inputs
CS1	Chip Enable 1 Input
CS2	Chip Enable 2 Input
ŌĒ	Output Enable Input
WE	Write Enable Input
I/O0-I/O7	Input/Output
NC	No Connection
V _{DD}	Power
GND	Ground

32-pin SOP (Q)

TRUTH TABLE

Mode	WE	CS1	CS2	ŌĒ	I/O Operation	VDD Current	
Not Selected	Х	Н	Х	Х	High-Z	ISB1, ISB2	
(Power-down)	Χ	Χ	L	Χ	High-Z	ISB1, ISB2	
Output Disabled	Н	L	Н	Н	High-Z	Icc	
Read	Н	L	Н	L	D ouт	Icc	
Write	L	L	Н	Χ	Din	Icc	

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit	
VTERM	Terminal Voltage with Respect to GND	-0.5 to V _{DD} + 0.5	V	
VDD	VDD Relates to GND	-0.3 to 4.0	V	
Тѕтс	Storage Temperature	-65 to +150	°C	
Рт	Power Dissipation	1.0	W	

Notes:

 Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE(1,2)

Symbol	Parameter	Conditions	Max.	Unit	
Cin	Input Capacitance	$V_{IN} = 0V$	6	pF	
C _{I/O}	Input/Output Capacitance	VOUT = $0V$	8	pF	

Notes

- 1. Tested initially and after any design or process changes that may affect these parameters.
- 2. Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz, $V_{DD} = 3.3V$.

ACTEST CONDITIONS

Parameter	Unit (2.3V-3.6V)	Unit (3.3V <u>+</u> 5%)	Unit (1.65V-2.2V)	
Input Pulse Level	0.4V to V _{DD} - 0.3V	0.4V to V _{DD} - 0.3V	0.4V to VDD - 0.3V	
Input Rise and Fall Times	1V/ ns	1V/ ns	1V/ ns	
Input and Output Timing and Reference Level (VRef)	VDD /2	<u>VDD</u> + 0.05 2	0.9V	
Output Load	See Figures 1 and 2	See Figures 1 and 2	See Figures 1 and 2	
R1 (Ω)	317	317	13500	
R2 (Ω)	351	351	10800	
Vтм (V)	3.3V	3.3V	1.8V	

ACTEST LOADS

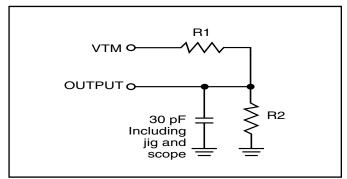


Figure 1.

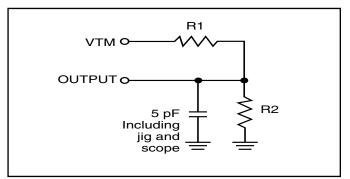


Figure 2.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

$V_{DD} = 3.3V \pm 5\%$

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	$V_{DD} = Min., I_{OH} = -1 \text{ mA}$	2.4	_	V
Vol	Output LOW Voltage	$V_{DD} = Min., IoL = 2.1 mA$	_	0.4	V
VIH	Input HIGH Voltage		2	V _{DD} + 0.3	V
VIL	Input LOW Voltage(1)		-0.3	0.8	V
lu	Input Leakage	$GND \leq Vin \leq Vdd$	-1	1	μA
ILO	Output Leakage	GND ≤ Vout ≤ Vdd, Outputs Disabled	-1	1	μA

Note

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

$V_{DD} = 2.3V - 3.6V$

Symbol	Parameter Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	$V_{DD} = Min., I_{OH} = -1.0 \text{ mA}$	1.8	_	V
Vol	Output LOW Voltage	V _{DD} = Min., I _{OL} = 2.1 mA	_	0.4	V
VIH	Input HIGH Voltage		2.0	V _{DD} + 0.3	V
VIL	Input LOW Voltage(1)		-0.3	0.8	V
lu	Input Leakage	$GND \leq Vin \leq Vdd$	-1	1	μΑ
ILO	Output Leakage	$GND \leq Vout \leq Vdd$, Outputs Disabled	-1	1	μA

Note:

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

$V_{DD} = 1.65V-2.2V$

Symbol	Parameter	Test Conditions	V DD	Min.	Max.	Unit
Vон	Output HIGH Voltage	Iон = -0.1 mA	1.65-2.2V	1.4		V
Vol	Output LOW Voltage	IoL = 0.1 mA	1.65-2.2V	_	0.2	V
VIH	Input HIGH Voltage		1.65-2.2V	1.4	V _{DD} + 0.2	V
VIL ⁽¹⁾	Input LOW Voltage		1.65-2.2V	-0.2	0.4	V
lu	Input Leakage	$GND \leq Vin \leq Vdd$		-1	1	μA
ILO	Output Leakage	$GND \leq Vout \leq Vdd, O$	utputs Disabled	-1	1	μA

Note:

^{1.} V_{IL} (min.) = −0.3V DC; V_{IL} (min.) = −2.0V AC (pulse width < 10 ns). Not 100% tested. V_{IH} (max.) = V_{DD} + 0.3V DC; V_{IH} (max.) = V_{DD} + 2.0V AC (pulse width < 10 ns). Not 100% tested.

^{1.} V_{IL} (min.) = -0.3V DC; V_{IL} (min.) = -2.0V AC (pulse width < 10 ns). Not 100% tested. VIH (max.) = V_{DD} + 0.3V DC; V_{IH} (max.) = V_{DD} + 2.0V AC (pulse width < 10 ns). Not 100% tested.

^{1.} V_{IL} (min.) = -0.3V DC; V_{IL} (min.) = -2.0V AC (pulse width < 10 ns). Not 100% tested. V_{IH} (max.) = V_{DD} + 0.3V DC; V_{IH} (max.) = V_{DD} + 2.0V AC (pulse width < 10 ns). Not 100% tested.

IS62WV1288DALL/DBLL IS65WV1288DALL/DBLL

OPERATING RANGE (VDD)

Range	Ambient Temperature	V DD	Speed	
Commercial	0°C to +70°C	1.65V-2.2V	45ns	
Industrial	–40°C to +85°C	1.65V-2.2V	55ns	
Automotive	-40°C to +125°C	1.65V-2.2V	55ns	

OPERATING RANGE (VDD)

Range	Ambient Temperature	V _{DD} (45 ns)	Vdd (35 ns)	
Commercial	0°C to +70°C	2.3V-3.6V	3.3V <u>+</u> 5%	
Industrial	-40°C to +85°C	2.3V-3.6V	3.3V <u>+</u> 5%	

OPERATING RANGE (VDD)

Range	Ambient Temperature	Vdd (45 ns)	
Automotive	-40°C to +125°C	2.3V-3.6V	

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

			-35			15		55	
Parameter	Test Conditions		Min.	Max.	Min.	Max.	Min.	Max.	Unit
VDD Dynamic Operating	VDD = Max.,	Com.	_	8	_	6	_	5	mA
Supply Current	$IOUT = 0 \text{ mA}, f = f_{MAX}$	Ind.	_	12	_	8	_	7	
	CS1 = VIL	Auto.	_	15	_	12	_	12	
	$V_{\text{IN}} \ge V_{\text{DD}} - 0.3V$, or	typ.(2)	4	1					
	$V_{IN} \leq 0.4V$								
Operating	V _{DD} = Max.,	Com.	_	2.5	_	2.5	_	2.5	mA
Supply Current	IOUT = 0 mA, f = 0	Ind.	_	2.5	_	2.5	_	2.5	
	$\overline{CS1} = VIL$	Auto.	_	3	_	3	_	3	
	$V_{IN} \ge V_{DD} - 0.3V$, or								
	$VIN \leq 0.4V$								
CMOS Standby	V _{DD} = Max.,	Com.	_	2	_	2	_	2	μΑ
Current (CMOS Inputs)	$\overline{CS1} \ge V_{DD} - 0.2V$,	Ind.	_	4	_	4	_	4	·
, , ,	$V_{IN} \ge V_{DD} - 0.2V$, or	Auto.		18	_	18	_	18	
	$Vin \leq 0.2V, f = 0$	typ.(2)	0	.6					
	VDD Dynamic Operating Supply Current Operating Supply Current CMOS Standby	$\begin{array}{lll} & & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Note:

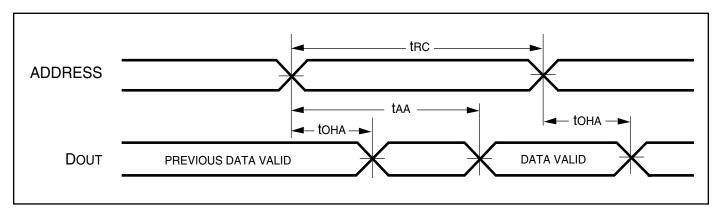
- 1. At $f = f_{MAX}$, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.
- 2. Typical values are measured at $V_{DD} = 3.0V$, $T_A = 25^{\circ}C$ and not 100% tested.

IS62WV1288DALL/DBLL IS65WV1288DALL/DBLL

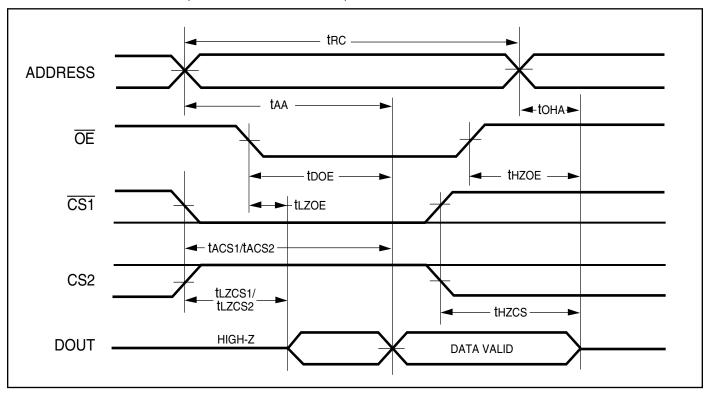
READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

		35	ns	45	ns	55 :	ns	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
trc	Read Cycle Time	35	_	45	_	55	_	ns
taa	Address Access Time	_	35	_	45	_	55	ns
toha	Output Hold Time	10	_	10	_	10	_	ns
tacs1/tacs2	CS1/CS2 Access Time	_	35	_	45	_	55	ns
tdoe	OE Access Time	_	10	_	20	_	25	ns
thzoe ⁽²⁾	OE to High-Z Output	_	10	_	15	_	20	ns
tLZOE ⁽²⁾	OE to Low-Z Output	3	_	5	_	5	_	ns
thzcs1/thzcs2 ⁽²⁾	CS1/CS2 to High-Z Output	0	10	0	15	0	20	ns
tlzcs1/tlzcs2 ⁽²⁾	CS1/CS2 to Low-Z Output	5	_	10	_	10	_	ns

Notes


^{1.} Test conditions assume signal transition times of 5 ns or less, timing reference levels of 0.9V/1.5V, input pulse levels of 0.4 to VDD-0.2V/VDD-0.3V and output loading specified in Figure 1.

^{2.} Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.


AC WAVEFORMS

READ CYCLE NO. 1^(1,2) (Address Controlled) ($\overline{CS1} = \overline{OE} = VIL, CS2 = \overline{WE} = VIH)$

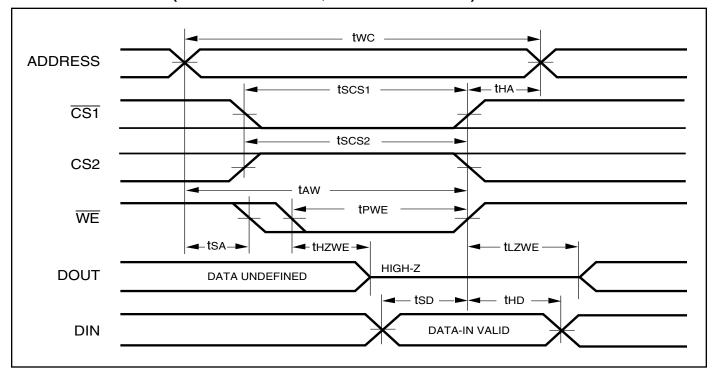
AC WAVEFORMS

READ CYCLE NO. 2^(1,3) (CS1, CS2, OE Controlled)

Notes:

- 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , $\overline{CS1} = V_{IL}$. $CS2 = \overline{WE} = V_{IH}$.
- 3. Address is valid prior to or coincident with CS1 LOW and CS2 HIGH transition.

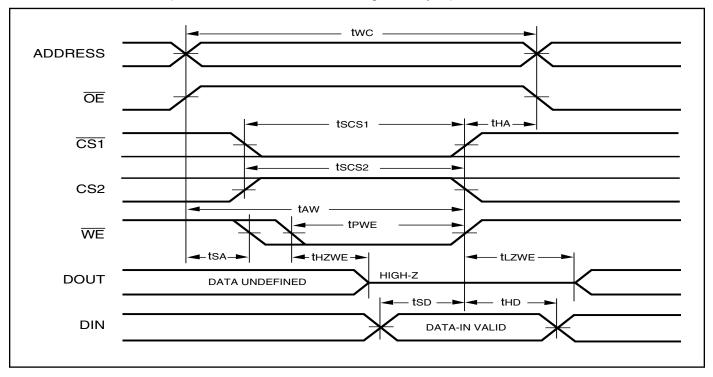
WRITE CYCLE SWITCHING CHARACTERISTICS(1,2) (Over Operating Range)

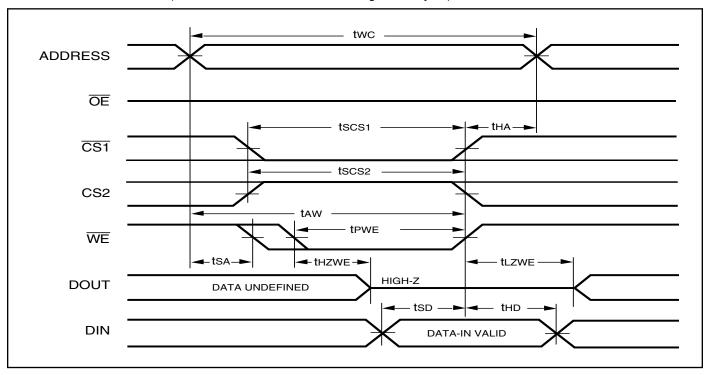

		35	ins	45ns	55	ns	
Symbol	Parameter	Min.	Max.	Min. Max.	Min.	Max.	Unit
twc	Write Cycle Time	35	_	45 —	55	_	ns
tscs1/tscs2	CS1/CS2 to Write End	25	_	35 —	45	_	ns
taw	Address Setup Time to Write End	25	_	35 —	45	_	ns
tha	Address Hold from Write End	0	_	0 —	0	_	ns
t sa	Address Setup Time	0	_	0 —	0	_	ns
t PWE	WE Pulse Width	25	_	35 —	40	_	ns
tsd	Data Setup to Write End	20	_	20 —	25	_	ns
tho	Data Hold from Write End	0	_	0 —	0	_	ns
thzwe ⁽³⁾	WE LOW to High-Z Output	_	10	— 20	_	20	ns
tLZWE ⁽³⁾	WE HIGH to Low-Z Output	3	_	5 —	5	_	ns

Notes:

- 1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 0.9V/1.5V, input pulse levels of 0.4V to VDD-0.2V/VDD-0.3V and output loading specified in Figure 1.
- 2. The internal write time is defined by the overlap of $\overline{CS1}$ LOW, CS2 HIGH and \overline{UB} or \overline{LB} , and \overline{WE} LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.
- 3. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

AC WAVEFORMS

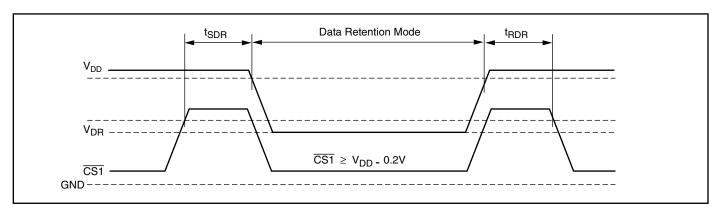

WRITE CYCLE NO. 1 ($\overline{CS1}/CS2$ Controlled, $\overline{OE} = HIGH$ or LOW)



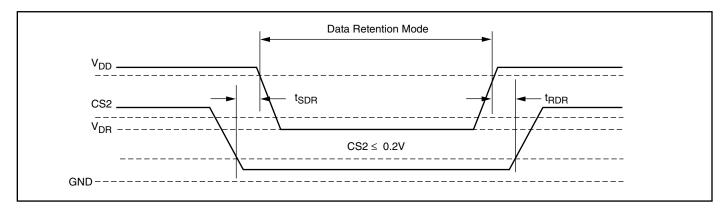
AC WAVEFORMS

WRITE CYCLE NO. 2 (WE Controlled: OE is HIGH During Write Cycle)

WRITE CYCLE NO. 3 (WE Controlled: OE is LOW During Write Cycle)



DATA RETENTION SWITCHING CHARACTERISTICS


Symbol	Parameter	Test Condition		Min.	typ. ⁽¹⁾	Max.	Unit
VDR	VDD for Data Retention	See Data Retention Waveform		1.2		3.6	V
IDR	Data Retention Current	$V_{DD} = 1.2V, \overline{CS1} \ge V_{DD} - 0.2V$	Com. Ind. Auto.	_	0.5	2 4 18	μА
tsdr	Data Retention Setup Time	See Data Retention Waveform		0		_	ns
trdr	Recovery Time	See Data Retention Waveform		trc		_	ns

Note: 1. Typical values are measured at VDD = 3.0V, TA = 25°C and not 100% tested.

DATA RETENTION WAVEFORM (CS1 Controlled)

DATA RETENTION WAVEFORM (CS2 Controlled)

IS62WV1288DALL/DBLL IS65WV1288DALL/DBLL

ORDERING INFORMATION

IS62WV1288DALL (1.65V - 2.2V)

Industrial Range: -40°C to +85°C

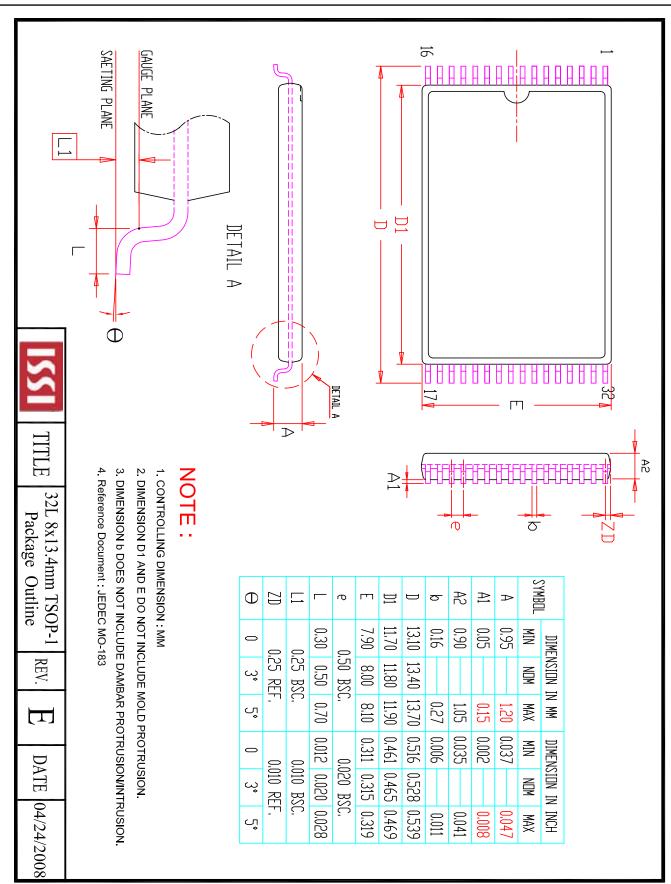
Speed (ns)	Order Part No.	Package
55	IS62WV1288DALL-55TI	TSOP-I (8mmx20mm)
	IS62WV1288DALL-55TLI	TSOP-I, Lead-free (8mmx20mm)
	IS62WV1288DALL-55HI	sTSOP-I (8mmx13.4mm)
	IS62WV1288DALL-55HLI	sTSOP-I, Lead-free (8mmx13.4mm)
	IS62WV1288DALL-55BI	mini BGA (6mm x 8mm)
	IS62WV1288DALL-55BLI	mini BGA (6mm x 8mm), Lead-free

ORDERING INFORMATION

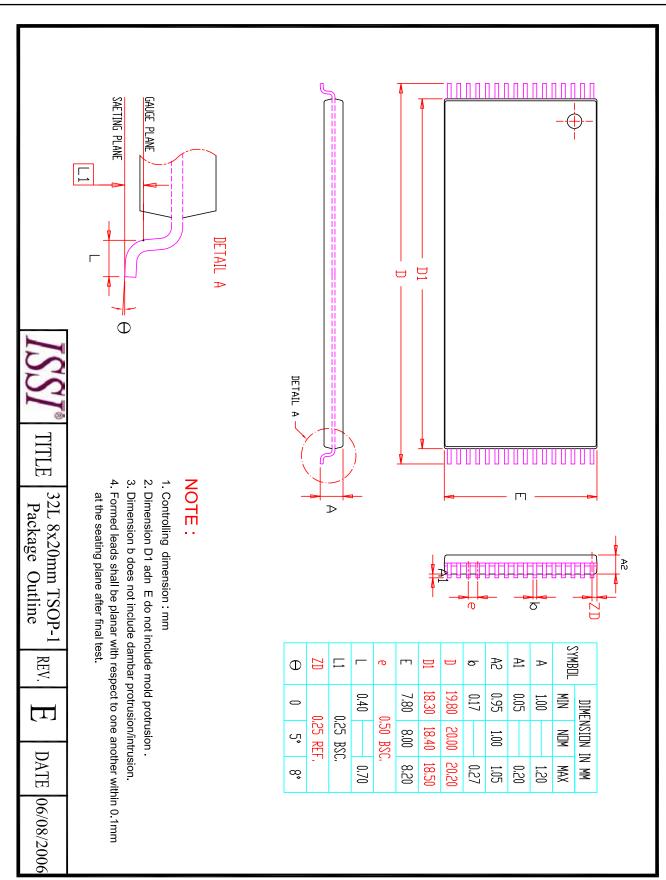
IS62WV1288DBLL (2.3V - 3.6V)

Industrial Range: -40°C to +85°C1

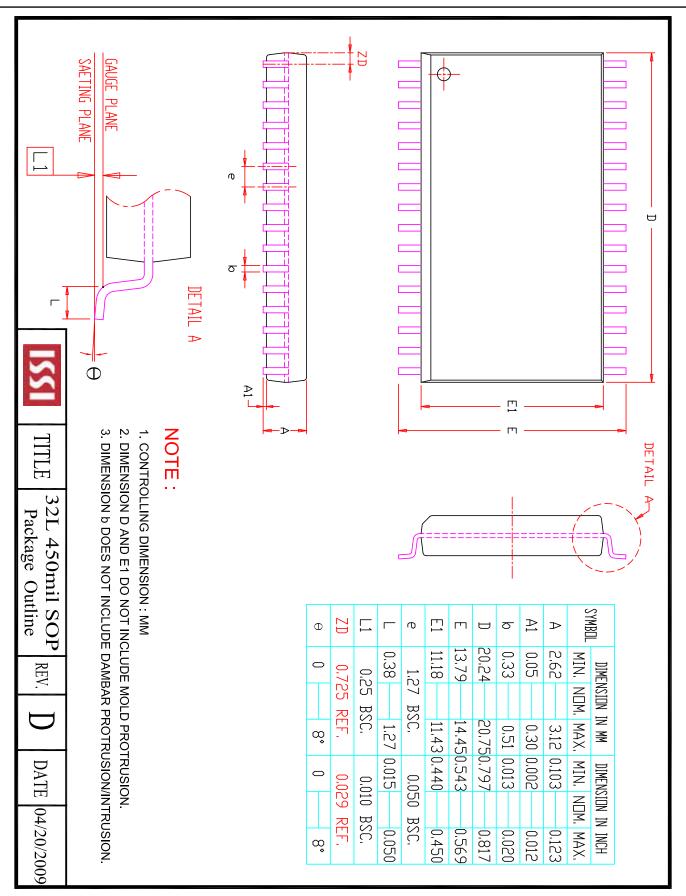
Speed (ns)	Order Part No.	Package
45	IS62WV1288DBLL-45TI	TSOP-I (8mmx20mm)
	IS62WV1288DBLL-45TLI	TSOP-I, Lead-free (8mmx20mm)
	IS62WV1288DBLL-45HI	sTSOP-I (8mmx13.4mm)
	IS62WV1288DBLL-45HLI	sTSOP-I, Lead-free (8mmx13.4mm)
	IS62WV1288DBLL-45QI	SOP
	IS62WV1288DBLL-45QLI	SOP, Lead-free
	IS62WV1288DBLL-45BI	mini BGA (6mm x 8mm)
	IS62WV1288DBLL-45BLI	mini BGA (6mm x 8mm), Lead-free

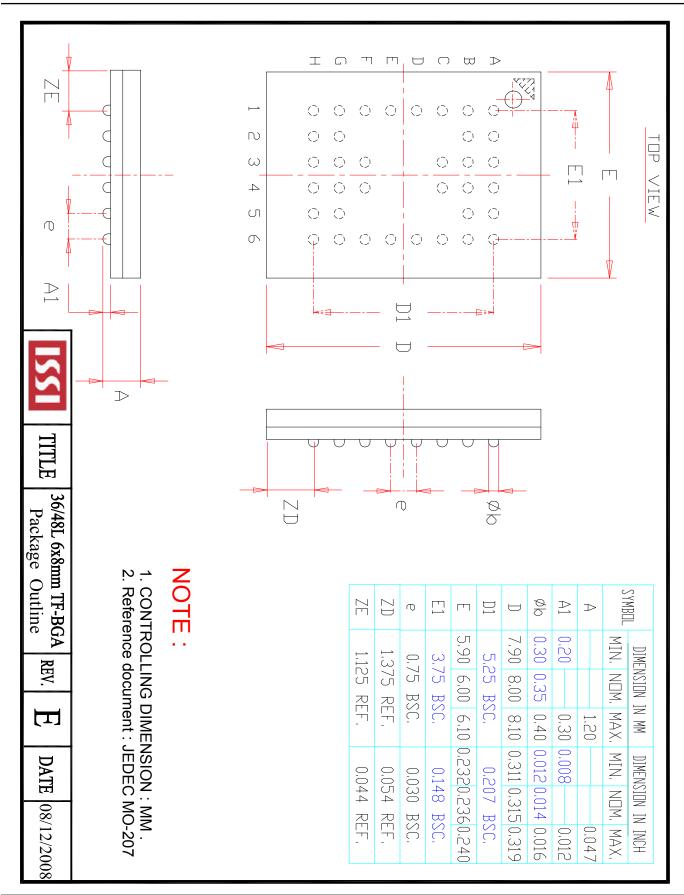

Automotive Range: -40°C to +125°C

Speed (ns)	Order Part No.	Package
45		TSOP-I, Lead-free (8mmx20mm) sTSOP-I, Lead-free (8mmx13.4mm) SOP, Lead-free


Notes

1. Speed = 35ns for temperature range of 0°C to +70°C or for $V_{DD} = 3.3V \pm 5$ %.





Downloaded from **Arrow.com**.