

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-55			V	$V_{GS} = 0V, I_{D} = -250\mu A$	
ΔV(BR)DSS/ΔTJ	Breakdown Voltage Temp. Coefficient		-0.034		V/°C	Reference to 25°C, I _□ = -1mA⑤	
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.06	Ω	V _{GS} = -10V, I _D = -16A ④	
V _{GS(th)}	Gate Threshold Voltage	-2.0		-4.0	V	$V_{DS} = V_{GS}$, $I_D = -250\mu A$	
g fs	Forward Transconductance	8.0			S	V _{DS} = -25V, I _D = -16A ^⑤	
haa	Drain-to-Source Leakage Current			-25	μΑ -	V_{DS} = -55V, V_{GS} = 0V	
IDSS				-250		$V_{DS} = -44V, V_{GS} = 0V, T_{J} = 150$ °C	
	Gate-to-Source Forward Leakage			100	n A	V _{GS} = 20V	
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA -	V _{GS} = -20V	
Qg	Total Gate Charge			63		I _D = -16A	
Q _{gs}	Gate-to-Source Charge			13	nC	$V_{DS} = -44V$	
Q _{gd}	Gate-to-Drain ("Miller") Charge			29		V_{GS} = -10V, See Fig. 6 and 13 \P	
t _{d(on)}	Turn-On Delay Time		14			V _{DD} = -28V	
tr	Rise Time		66			I _D = -16A	
t _{d(off)}	Turn-Off Delay Time		39	_	ns	$R_G = 6.8\Omega$	
tf	Fall Time		63			$R_D = 1.6\Omega$, See Fig. 10 \oplus \bigcirc	
L _S	Internal Source Inductance		7.5		nΗ	Between lead,	
						and center of die contact	
Ciss	Input Capacitance		1200			V _{GS} = 0V	
Coss	Output Capacitance		520		pF	V _{DS} = -25V	
Crss	Reverse Transfer Capacitance		250		1	f = 1.0MHz, See Fig. 5⑤	

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Мах.	Units	Conditions
ls	Continuous Source Current			-31	А	MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current			-110		integral reverse
	(Body Diode) ①					p-n junction diode.
V _{SD}	Diode Forward Voltage			-1.3	V	$T_J = 25$ °C, $I_S = -16A$, $V_{GS} = 0V$ ④
trr	Reverse Recovery Time		71	110	ns	T _J = 25°C, I _F = -16A
Qrr	Reverse Recovery Charge		170	250	nC	di/dt = -100A/µs ⊕⑤
t _{on}	Forward Turn-On Time	Intr	insic tu	rn-on ti	me is ne	egligible (tum-on is dominated by L _S +L _D)

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- 9 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- V $_{DD}$ = -25V, Starting T $_{J}$ = 25°C, L = 2.1mH R $_{G}$ = 25 Ω , I $_{AS}$ = -16A. (See Figure 12)
- S Uses IRF5305 data and test conditions
- ③ $I_{SD} \le -16A$, $di/dt \le -280A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_{c} < 175^{\circ}C$
- ** When mounted on 1" square PCB (FR-4 or G-10 Material).
 For recommended footprint and soldering techniques refer to application note #AN-994.

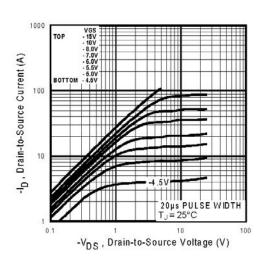


Fig 1. Typical Output Characteristics

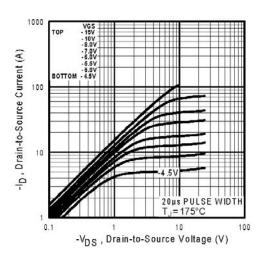


Fig 2. Typical Output Characteristics

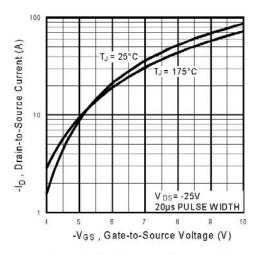


Fig 3. Typical Transfer Characteristics

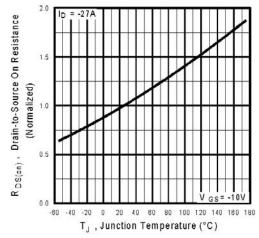


Fig 4. Normalized On-Resistance Vs. Temperature

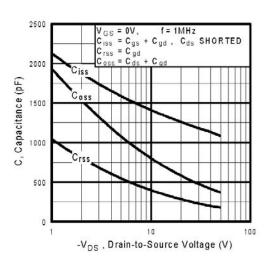


Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

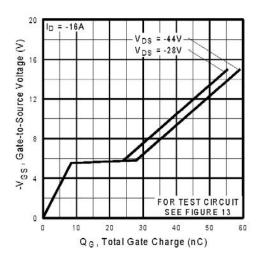


Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

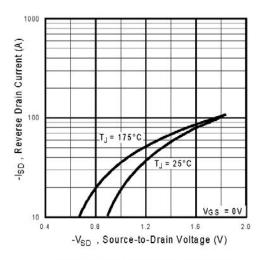


Fig 7. Typical Source-Drain Diode Forward Voltage

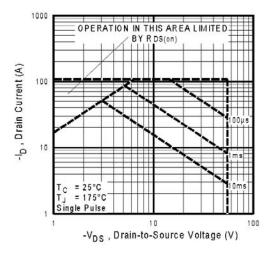


Fig 8. Maximum Safe Operating Area

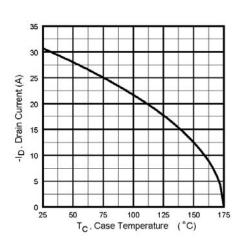


Fig 9. Maximum Drain Current Vs. Case Temperature

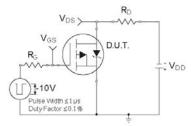


Fig 10a. Switching Time Test Circuit



Fig 10b. Switching Time Waveforms

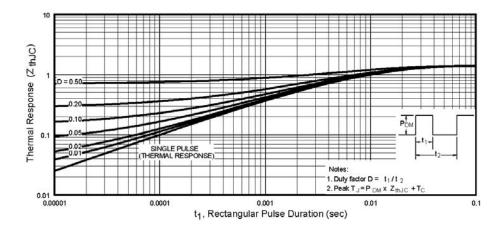


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

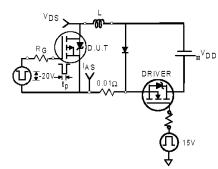


Fig 12a. Unclamped Inductive Test Circuit

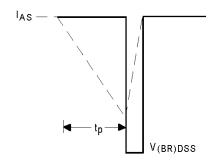


Fig 12b. Unclamped Inductive Waveforms

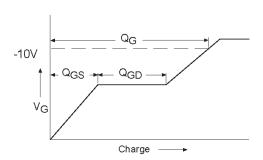
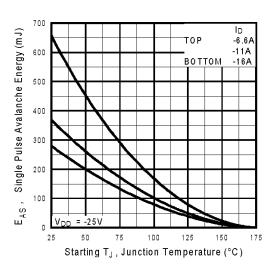



Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

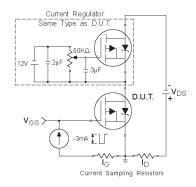
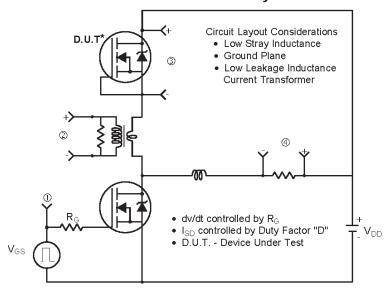
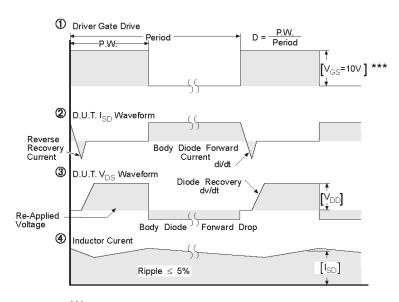
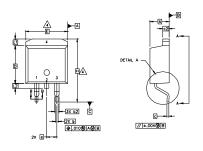




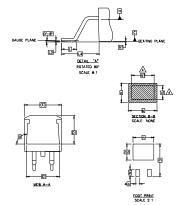
Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity of D.U.T for P-Channel



*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices


Fig 14. For P-Channel HEXFETS

International TOR Rectifier

D²Pak Package Outline

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN WILLIMETERS [INCHES].
- 3. DMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005*] PER SIDE. THESE DMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.

4. DIMENSION 61 AND 61 APPLY TO BASE METAL ONLY.

	5. CON IROLLING DIMENSION: INCH.									
	S Y M B O	DIMENSIONS								
	B	MILLIMETERS		INC	O T E S					
1 6		MIN. MAX,		MIN.	MAX.	E S				
	A	4,06	4.83	,160	.190					
	A1	0,00	0.254	,000	.010					
	ь	0.51	0.99	.020	.039					
	ь1	0.51	0.89	.020	.035	4				
	b2	1.14	1.78	.045	.070					
	С	0.38	0.74	.015	.029					
	c1	0.38	0.58	.015	.023	4				
	c2	1,14	1.65	.045	.065					
	D	8.51	9.65	.335	.380	3				
	D1	6.86		.270						
	Ε	9.65	10.67	.380	.420	3				
	E1	6.22		.245						
	е	2.54 BSC		.100						
	н	14,61	15,88	.575	.625					
	L	1,78	2.79	.070	.110					
	L1		1.65		.065					
	L2	1.27	1.78	.050	.070					
	L3	0.25 BSC		.010						
	L4	4,78	5.28	.188	.208					
	m	17,78		.700						
	m1	8.89		.350						
	n	11,43		.450						
	0	2.08		.082						
	p	3,81		.150						
	R	0.51	0.71	.020	.028					
	Θ	90*	93*	90"	93*	1				

LEAD ASSIGNMENTS

HEXFET

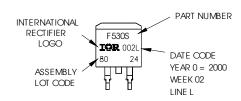
1.- GATE
2, 4.- DRAIN
3.- SOURCE

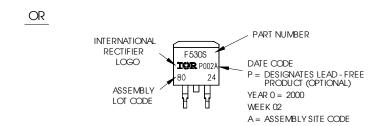
IGBTs, CoPACK

1,- GATE
2, 4,- COLLECTOR
3,- EMITTER

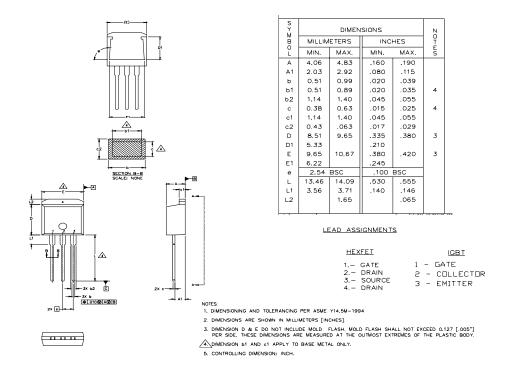
DIODES

1.- ANODE *
2, 4.- CATHODE
3.- ANODE

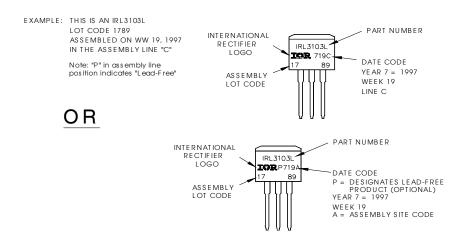

* PART DEPENDENT.


D²Pak Part Marking Information

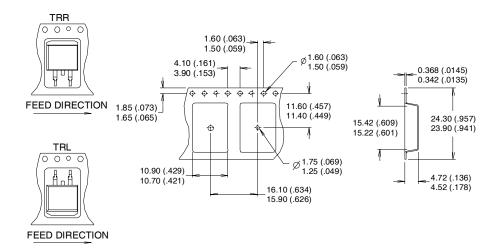
EXAMPLE: THIS IS AN IRF530S WITH LOT CODE 8024

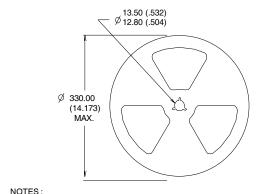

ASSEMBLED ON WW 02, 2000 IN THE ASSEMBLY LINE "L"

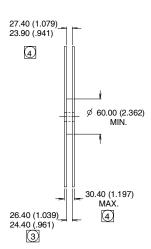
Note: "P" in assembly line position indicates "Lead — Free"



TO-262 Package Outline


TO-262 Part Marking Information




International IOR Rectifier

D²Pak Tape & Reel Information

Dimensions are shown in millimeters (inches)

COMFORMS TO EIA-418.

CONTROLLING DIMENSION: MILLIMETER.

DIMENSION MEASURED @ HUB. INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Data and specifications subject to change without notice.

International IOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.04/05

www.irf.com

10

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/