International IOR Rectifier

Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are referenced to SOURCE lead. (TAmbient = 25°C unless otherwise specified). PCB mounting uses the standard footprint with 70 µm copper thickness.

Symbol	Parameter	Min.	Max.	Units	Test Conditions
V _{ds}	Maximum drain to source voltage	_	47		
V _{in}	Maximum input voltage	-0.3	7	V	
lin, max	Maximum IN current	-10	+10	mA	
Isd cont.	Diode max. continuous current (1)				
	rth=100°C/W	_	1.6		D-Pak Std footprint
	rth=5°C/W	_	18	Α	D-Pak with Rth=5°C/W
	rth=50°C/W	_	3		D-Pak with sq. footprint
sd pulsed	Diode max. pulsed current (1)	_	18		
Pd	Maximum power dissipation ⁽¹⁾				
	rth=50°C/W	_	2.5		
	rth=100°C/W	_	1.25	w	
ESD1	Electrostatic discharge voltage (Human Body)	_	4		C=100pF, R=1500Ω,
ESD2	Electrostatic discharge voltage (Machine Model)	_	0.5	137	C=200pF, R=0Ω, L=10μH
T stor.	Max. storage temperature	-55	150	kV	
T _j max.	Max. junction temperature	-40	+150		
T _{lead}	Lead temperature (soldering, 10 seconds)	_	300	°C	

Thermal Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Rth 1	Thermal resistance with standard footprint	_	100	_	00.044	
Rth 2	Thermal resistance with 1" square footprint	1	50	_	°C/W	D-PAK
Rth 3	Thermal resistance junction to case		3	_		

Recommended Operating Conditions

These values are given for a quick design. For operation outside these conditions, please consult the application notes.

Symbol	Parameter	Min.	Max.	Units
Vds (max)	Continuous drain to source voltage	_	35	_
VIH	High level input voltage	4	6	V
VIL	Low level input voltage	0	0.5	•
lds	Continuous drain current			
Tamb=85°C	TAmbient = 85° C, IN = 5V, rth = 50° C/W, Tj = 125° C) 1" sq. footprint	_	3.3	Α
	TAmbient = 85°C, IN = 5V, rth = 100°C/W, Tj = 125°C) Std. footprint	_	2	
Rin	Recommended resistor in series with IN pin	0.2	5	$k\Omega$
	Max recommended rise time for IN signal (see fig. 2)	_	1	μS
Fr-Isc (2)	Max. frequency in short circuit condition (Vcc = 14V)	0	1	kHz

⁽¹⁾ Limited by junction temperature (pulsed current limited also by internal wiring)

⁽²⁾ Operations at higher switching frequencies is possible. See Application. Notes.

International

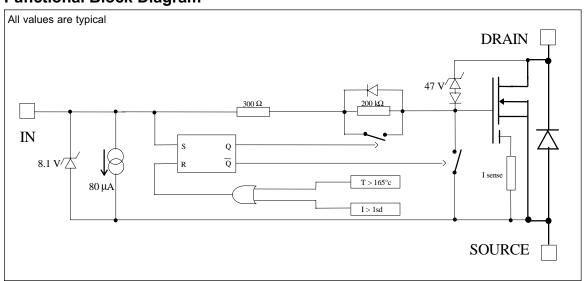
TOR Rectifier

Static Electrical Characteristics

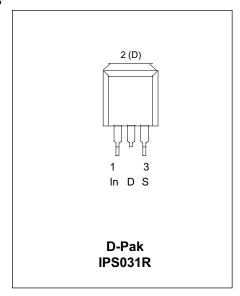
 $(T_j = 25^{\circ}C \text{ unless otherwise specified.})$

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Rds(on)	ON state resistance T _j = 25°C	20	45	60	mΩ	Vin = 5V, Ids = 1A
R _{ds(on)}	ON state resistance Tj = 150°C		75	100	11152	· · · · · · · · · · · · · · · · · · ·
Idss	Drain to source leakage current	0	0.5	25		$V_{CC} = 14V, T_j = 25^{\circ}C$
@Tj=25°C						
I _{dss2}	Drain to source leakage current	0	5	50	μΑ	$V_{CC} = 40V, T_j = 25^{\circ}C$
@Tj=25°C						
V clamp 1	Drain to source clamp voltage 1	47	52	56		Id = 20mA (see Fig.3 & 4)
V clamp 2	Drain to source clamp voltage 2	50	53	60		I _d =I _{shutdown} (see Fig.3 & 4)
Vin clamp	IN to source clamp voltage	7	8.1	9.5	V	I _{in} = 1 mA
Vth	IN threshold voltage	1	1.6	2		I _d = 50mA, Vds = 14V
lin, -on	ON state IN positive current	25	90	200		V _{in} = 5V
lin, -off	OFF state IN positive current	50	130	250	μΑ	V _{in} = 5V
						over-current triggered

Switching Electrical Characteristics


 V_{CC} = 14V, Resistive Load = 5 Ω , Rinput = 50 Ω , 100 μ s pulse, T_i = 25°C, (unless otherwise specified).

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Ton	Turn-on delay time	0.05	0.3	0.6		
Tr	Rise time	0.4	1	2	Ī	See figure 2
Trf	Time to 130% final Rds(on)	_	8	_	μs	
Toff	Turn-off delay time	0.8	2	3.5		See figure 2
Tf	Fall time	0.5	1.5	2.5		
Qin	Total gate charge	_	11	_	nC	V _{in} = 5V


Protection Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
T _{sd}	Over temperature threshold	_	165	_	°C	See fig. 1
I _{sd}	Over current threshold	10	14	18	Α	See fig. 1
V _{reset}	IN protection reset threshold	1.5	2.3	3	V	
Treset	Time to reset protection	2	10	40	μs	V _{in} = 0V, Tj = 25°C
EOI_OT	Short circuit energy (see application note)	_	400	_	μJ	V _{CC} = 14V

Functional Block Diagram

Lead Assignments

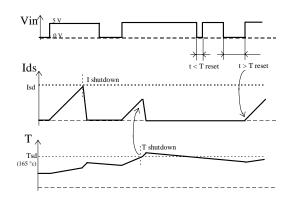
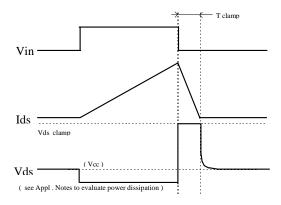



Figure 1 - Timing diagram

Figure 2 - IN rise time & switching time definitions

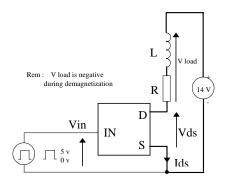


Figure 3 - Active clamp waveforms

Figure 4 - Active clamp test circuit

International TOR Rectifier

All curves are typical values with standard footprints. Operating in the shaded area is not recommended.

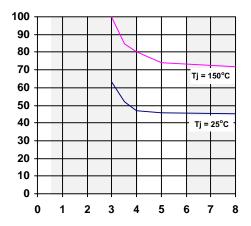


Figure 5 - Rds ON $(m\Omega)$ Vs Input Voltage (V)

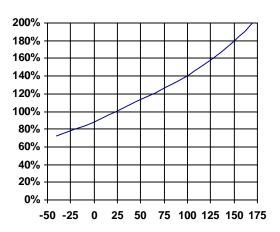


Figure 6 - Normalised Rds ON (%) Vs Tj (°C)

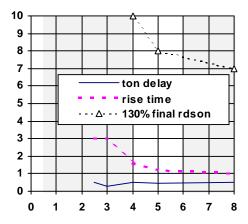


Figure 7 - Turn-ON Delay Time, Rise Time & Time to 130% final $R_{ds(on)}$ (us) Vs Input Voltage (V)

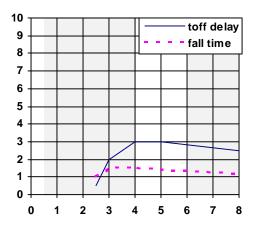


Figure 8 - Turn-OFF Delay Time & Fall Time (us)
Vs Input Voltage (V)

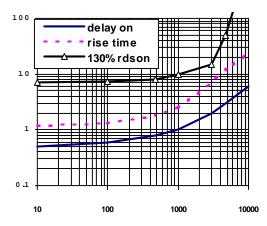


Figure 9 - Turn-ON Delay Time, Rise Time & Time to 130% final $R_{ds(on)}$ (us) Vs IN Resistor (Ω)

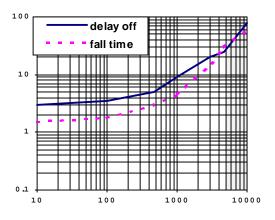


Figure 10 - Turn-OFF Delay Time & Fall Time (us) Vs $\,$ IN Resistor $\,$ (Ω)

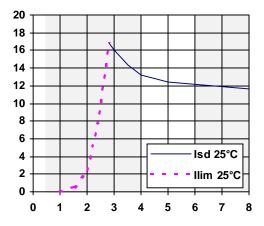


Figure 11 - Current limitation & I shutdown (A) $\mbox{Vs Vin (V)}$

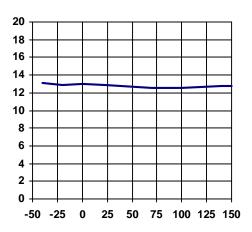


Figure 12 - I shutdown (A) Vs Temperature (°C)

International TOR Rectifier

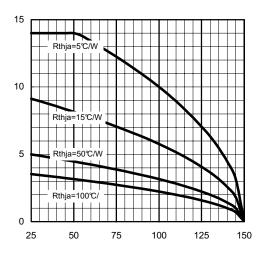


Figure 13 - Max. I load current (A) Vs Tamb (°C) IPS031R

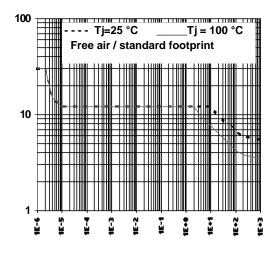


Figure 14 - Ids (A) Vs Protection Resp. Time (s) IPS031R

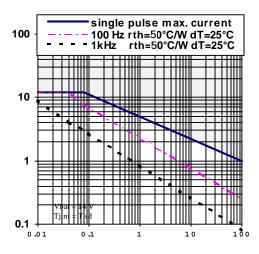
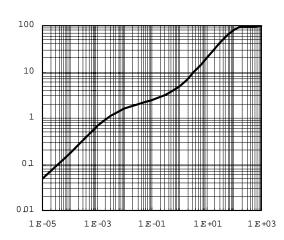
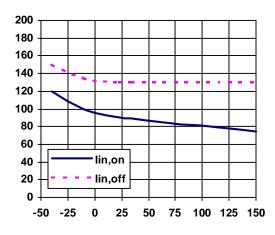




Figure 15 - Iclamp (A) Vs Inductive Load (mH)

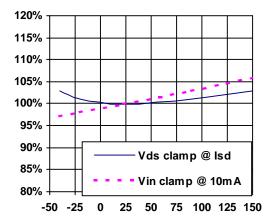


Figure 17 - Input current (μA) Vs Junction (°C)

Figure 18 - Vin clamp and V clamp2 (%) Vs Tj (°C)

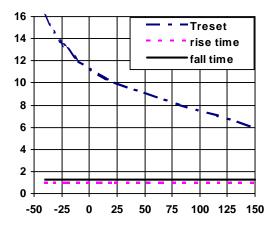
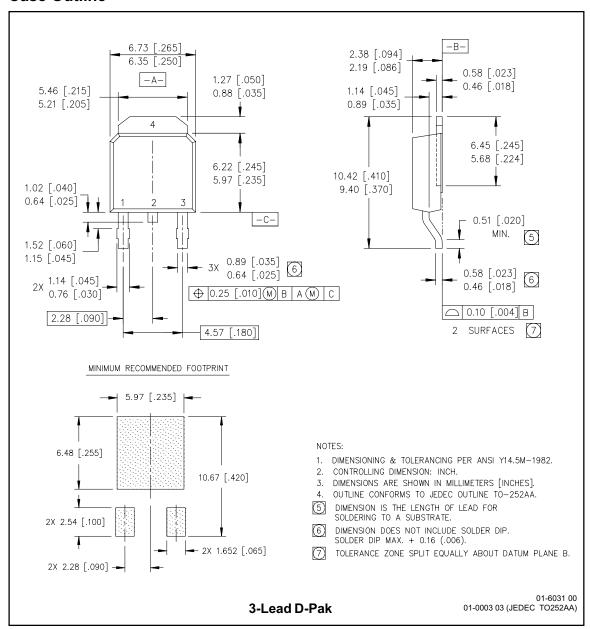
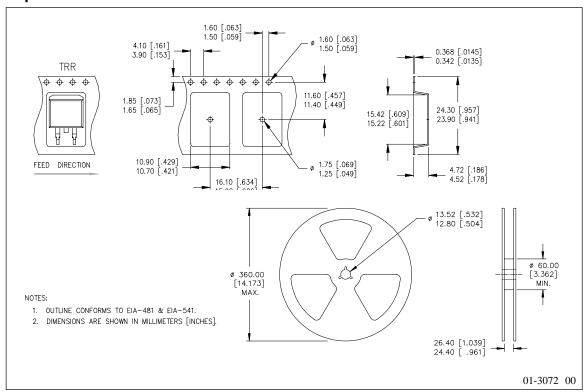




Figure 19 - Turn-on, Turn-off, and $\;treset\;(\mu s)$ Vs Tj (°C)

Case Outline

Tape & Reel - D-PAK

International TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
This device was designed and qualified peer automotive level (Q101)
Data and specifications subject to change without notice. 6/1/2004

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/