

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic				•
IGBT thermal resistance,	R _{thJC}		2.0	K/W
junction – case				
Diode thermal resistance,	R _{thJCD}		3.2	
junction - case				
Thermal resistance,	R_{thJA}	P-TO-220-3-1	62	
junction – ambient		P-TO-247-3-21		

Electrical Characteristic, at $T_j = 25$ °C, unless otherwise specified

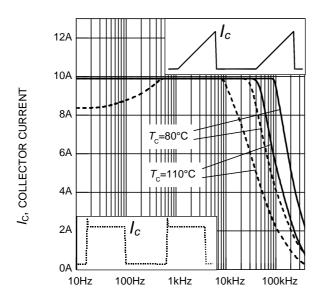
Devemates	O. mak al	Conditions	Value			l lmi4
Parameter	Symbol	Conditions	min.	Тур.	max.	Unit
Static Characteristic						•
Collector-emitter breakdown voltage	$V_{(BR)CES}$	$V_{\rm GE} = 0 \text{V}, I_{\rm C} = 300 \mu \text{A}$	1200	-	-	V
Collector-emitter saturation voltage	$V_{CE(sat)}$	$V_{\rm GE} = 15 \rm V, \ I_{\rm C} = 3 \rm A$				
		<i>T</i> _j =25°C	-	2.2	2.8	
		T _j =150°C	-	2.5	-	
		$V_{\text{GE}} = 10 \text{V}, I_{\text{C}} = 3 \text{A}, $ $T_{\text{j}} = 25 ^{\circ} \text{C}$	_	2.4	-	
Diode forward voltage	V _F	$V_{\rm GE} = 0, I_{\rm F} = 2A$				
		<i>T</i> _i =25°C	-	2.0	2.5	
		T _j =150°C	-	1.75	-	
Gate-emitter threshold voltage	$V_{\rm GE(th)}$	$I_{C}=90\mu\text{A}, V_{CE}=V_{GE}$	2.1	3	3.9	
Zero gate voltage collector current	I _{CES}	$V_{CE} = 1200 \text{V}, V_{GE} = 0 \text{V}$				μΑ
		<i>T</i> _j =25°C	-	-	20	
		T _j =150°C	-	-	80	
Gate-emitter leakage current	I _{GES}	$V_{\text{CE}}=0\text{V}, V_{\text{GE}}=20\text{V}$	-	-	100	nA
Transconductance	g_{fs}	$V_{CE} = 20 \text{V}, I_{C} = 3 \text{A}$	-	2	-	S
Dynamic Characteristic						
Input capacitance	Ciss	V _{CE} =25V,	-	205	-	pF
Output capacitance	Coss	$V_{GE}=0V$,	-	24	-	
Reverse transfer capacitance	C _{rss}	f=1MHz	-	7	-	
Gate charge	Q _{Gate}	V _{CC} =960V, I _C =3A	-	22	-	nC
		V _{GE} =15V				
Internal emitter inductance	L _E	PG-TO-220-3-1	-	7	-	nΗ
measured 5mm (0.197 in.) from case		PG-TO-247-3-21	-	13	-	

Switching Characteristic, Inductive Load, at T_j =25 °C

Parameter	Symbol Conditions		Value			Unit
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
IGBT Characteristic						
Turn-on delay time	$t_{d(on)}$	$T_j=25^{\circ}C$,	-	9.2	-	ns
Rise time	t _r	$V_{CC} = 800 \text{V}, I_{C} = 3 \text{A}, V_{GE} = 15 \text{V}/0 \text{V},$	-	5.2	-	
Turn-off delay time	$t_{d(off)}$	$R_{\rm G}=82\Omega$,	-	281	-	
Fall time	t_{f}	$L_{\sigma}^{(2)} = 180 \text{ nH},$	-	29	-	
Turn-on energy	Eon	$C_{\sigma}^{2)}$ =40pF	-	0.14	-	mJ
Turn-off energy	E_{off}	Energy losses include "tail" and diode ³⁾	-	0.15	-	
Total switching energy	E _{ts}	reverse recovery.	-	0.29	-	
Anti-Parallel Diode Characteristic						
Diode reverse recovery time	t_{rr}	<i>T</i> _j =25°C,	-	42	-	ns
Diode reverse recovery charge	Q _{rr}	V_{R} =800V, I_{F} =3A,	-	0.23	-	μC
Diode peak reverse recovery current	I _{rrm}	$R_{\rm G}$ =82 Ω	-	10.3	-	Α
Diode current slope	di _F /dt		-	993	-	A/μs
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	di _{rr} /dt		-	1180	-	

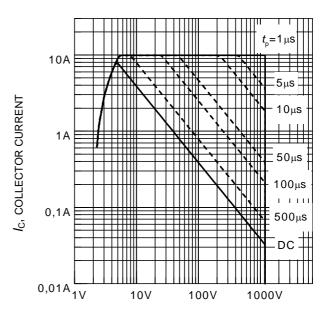
Switching Characteristic, Inductive Load, at T_j =150 °C

Parameter	Symbol Conditions	Value			Unit	
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
IGBT Characteristic						
Turn-on delay time	$t_{d(on)}$	T _j =150°C	-	9.4	-	ns
Rise time	t_{r}	$V_{CC} = 800 \text{V},$	-	6.7	-	
Turn-off delay time	$t_{d(off)}$	$I_{\rm C}$ =3A,	-	340	-	1
Fall time	t_{f}	$V_{\rm GE}=15V/0V$,	-	63	-	
Turn-on energy	Eon	$R_{\rm G} = 82\Omega$, $L_{\rm G}^{2)} = 180 {\rm nH}$,	-	0.22	-	mJ
Turn-off energy	E _{off}	$C_{\sigma}^{2)} = 40 \text{pF}$	-	0.26	-	
Total switching energy	E _{ts}	Energy losses include "tail" and diode ³⁾ reverse recovery.	-	0.48	-	
Anti-Parallel Diode Characteristic						
Diode reverse recovery time	t_{rr}	T _j =150°C	-	125	-	ns
Diode reverse recovery charge	Q _{rr}	V_{R} =800V, I_{F} =3A,	-	0.51	-	μC
Diode peak reverse recovery current	I _{rrm}	$R_{\rm G}$ =82 Ω	-	12	-	Α
Diode current slope	di _F /dt		-	829	-	A/μs
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	di _{rr} /dt		-	540	-	

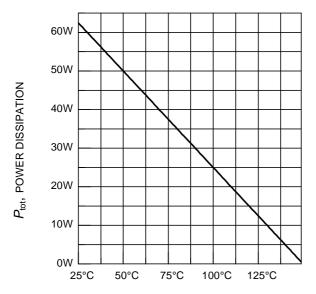

 $^{^{2)}}$ Leakage inductance L_σ and stray capacity C_σ due to dynamic test circuit in figure E $^{3)}$ Commutation diode from device IKP03N120H2

Switching Energy ZVT, Inductive Load

Parameter	Sumb al	Conditions	Value			11
	Symbol		min.	typ.	max.	Unit
IGBT Characteristic						
Turn-off energy	E _{off}	$V_{CC} = 800 \text{V},$				mJ
		$V_{CC} = 800 \text{V},$ $I_{C} = 3 \text{A},$ $V_{GE} = 15 \text{V/OV},$				
		$V_{GE} = 15 \text{V} / 0 \text{V},$				
		$R_{G} = 82\Omega$,				
		$C_r^{2)}=4nF$				
		<i>T</i> _j =25°C	-	0.05	-	
		$R_G=82\Omega$, $C_r^{(2)}=4nF$ $T_j=25^{\circ}C$ $T_j=150^{\circ}C$	-	0.09	-	



f, SWITCHING FREQUENCY


Figure 1. Collector current as a function of switching frequency

 $(T_{\rm j} \le 150^{\circ}\text{C}, \ D = 0.5, \ V_{\rm CE} = 800\text{V}, \ V_{\rm GE} = +15\text{V/OV}, \ R_{\rm G} = 82\Omega)$

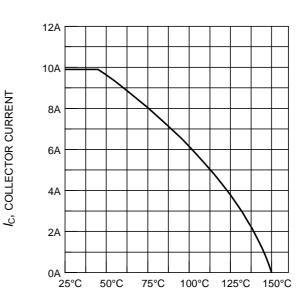
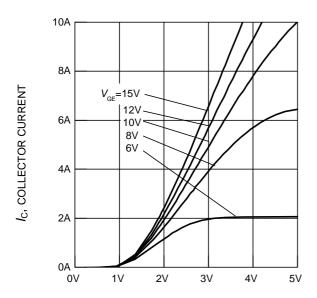

 V_{CE} , COLLECTOR-EMITTER VOLTAGE

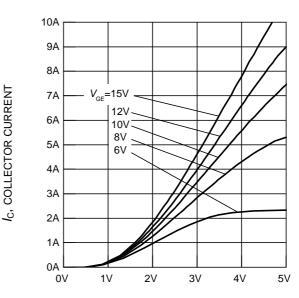
Figure 2. Safe operating area $(D = 0, T_C = 25^{\circ}C, T_i \le 150^{\circ}C)$

 $\ensuremath{T_{\text{C}}},\ensuremath{\text{ CASE}}$ TEMPERATURE Figure 3. Power dissipation as a function of case temperature

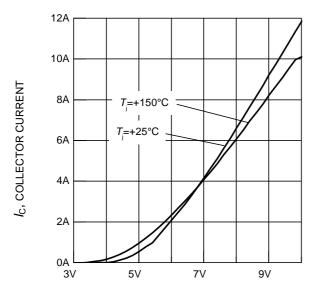
 $(T_i \le 150^{\circ}C)$

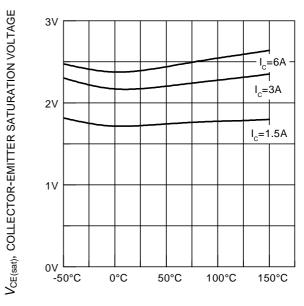


 $T_{\rm C}$, CASE TEMPERATURE

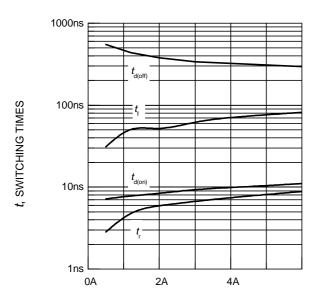

Figure 4. Collector current as a function of case temperature

 $(V_{GE} \le 15V, T_j \le 150^{\circ}C)$



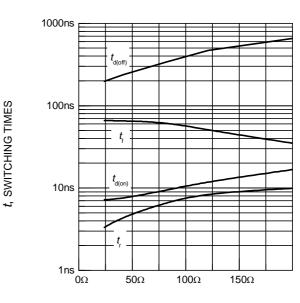

 V_{CE} , COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics ($T_i = 25^{\circ}\text{C}$)

 $V_{\rm CE}$, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics ($T_{\rm i} = 150^{\circ}{\rm C}$)



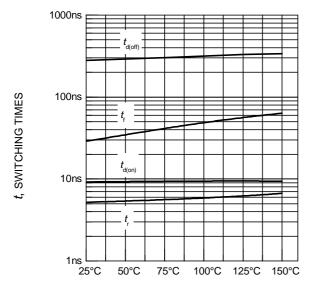
 $V_{\text{GE}},$ GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics ($V_{\text{CE}} = 20\text{V})$

 $T_{\rm j},$ JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature ($V_{\rm GE}=15\rm V)$



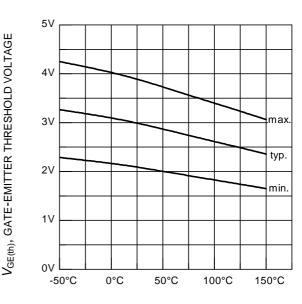
 $I_{\rm C}$, COLLECTOR CURRENT

Figure 9. Typical switching times as a function of collector current (inductive load, $T_j = 150$ °C,


 $V_{\rm CE} = 800$ V, $V_{\rm GE} = +15$ V/0V, $R_{\rm G} = 82\Omega$, dynamic test circuit in Fig.E)

R_G, GATE RESISTOR

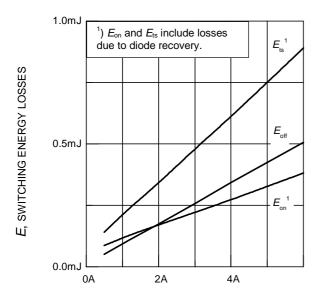
Figure 10. Typical switching times as a function of gate resistor


(inductive load, $T_j = 150^{\circ}\text{C}$, $V_{\text{CE}} = 800\text{V}$, $V_{\text{GE}} = +15\text{V/OV}$, $I_{\text{C}} = 3\text{A}$, dynamic test circuit in Fig.E)

 $T_{
m j}$, JUNCTION TEMPERATURE

Figure 11. Typical switching times as a function of junction temperature (inductive load, $V_{0.5} = 800\text{V}$

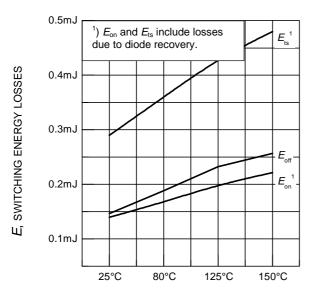
(inductive load, $V_{\rm CE}$ = 800V, $V_{\rm GE}$ = +15V/0V, $I_{\rm C}$ = 3A, $R_{\rm G}$ = 82 Ω , dynamic test circuit in Fig.E)



 $T_{\rm i}$, JUNCTION TEMPERATURE

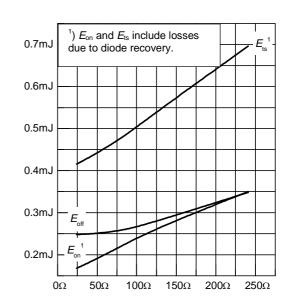
Figure 12. Gate-emitter threshold voltage as a function of junction temperature

 $(I_{\rm C} = 0.09 {\rm mA})$



 $I_{\rm C}$, COLLECTOR CURRENT

Figure 13. Typical switching energy losses as a function of collector current


(inductive load, $T_{\rm j}$ = 150°C, $V_{\rm CE}$ = 800V, $V_{\rm GE}$ = +15V/0V, $R_{\rm G}$ = 82 Ω , dynamic test circuit in Fig.E)

 $T_{\rm i}$, JUNCTION TEMPERATURE

Figure 15. Typical switching energy losses as a function of junction temperature

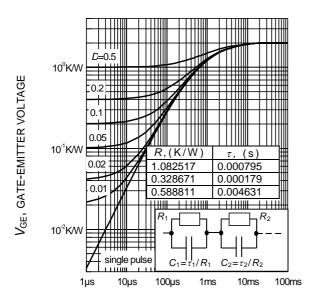
(inductive load, $V_{\rm CE}$ = 800V, $V_{\rm GE}$ = +15V/0V, $I_{\rm C}$ = 3A, $R_{\rm G}$ = 82 Ω , dynamic test circuit in Fig.E)

SWITCHING ENERGY LOSSES

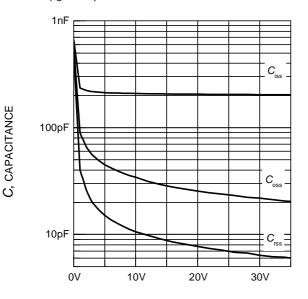
R_G, GATE RESISTOR

Figure 14. Typical switching energy losses as a function of gate resistor

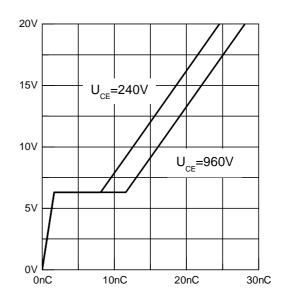
(inductive load, $T_{\rm j}$ = 150°C, $V_{\rm CE}$ = 800V, $V_{\rm GE}$ = +15V/0V, $I_{\rm C}$ = 3A, dynamic test circuit in Fig.E)



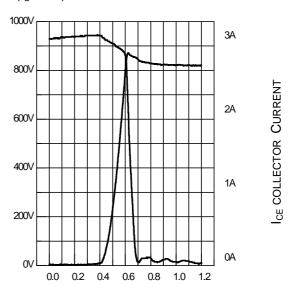
dv/dt, VOLTAGE SLOPE


Figure 16. Typical turn off switching energy loss for soft switching

(dynamic test circuit in Fig. E)

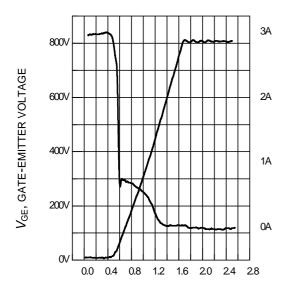


 $$Q_{\rm GE},\,{\rm GATE}\,{\rm CHARGE}$$ Figure 17. Typical gate charge ($\emph{I}_{\rm C}=3A)$

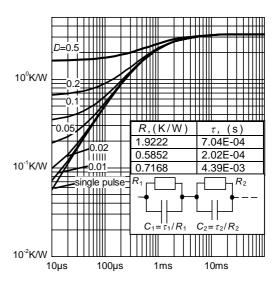

 $V_{\rm CE}$, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage ($V_{\rm GE}=0{\rm V},\,f=1{\rm MHz}$)

V_{GE}, GATE-EMITTER VOLTAGE

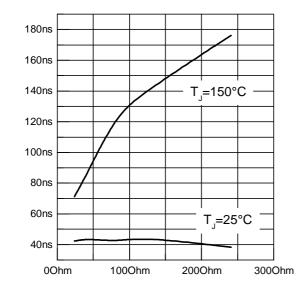
V_{CE}, COLLECTOR-EMITTER VOLTAGE


 $$Q_{\rm GE},\,{\rm GATE}\,{\rm CHARGE}$$ Figure 17. Typical gate charge ($\ensuremath{\emph{I}}_{\rm C}=3A)$

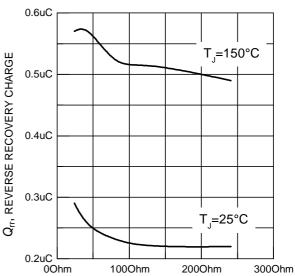
 $$t_{\! \rm p}$, PULSE WIDTH }$ Figure 20. Typical turn off behavior, hard switching


(V_{GE}=15/0V, R_G =82 Ω , T_j = 150°C, Dynamic test circuit in Figure E)

Z_{hJC}, TRANSIENT THERMAL RESISTANCE


I_{CE} COLLECTOR CURRENT

 $t_{
m p}$, PULSE WIDTH


Figure 21. Typical turn off behavior, soft switching

(V_{GE}=15/0V, R_G =82 Ω , T_j = 150°C, Dynamic test circuit in Figure E)

 $t_{\rm P}$, PULSE WIDTH

Figure 22. Diode transient thermal impedance as a function of pulse width $(D=t_P/T)$

R_G, GATE RESISTANCE

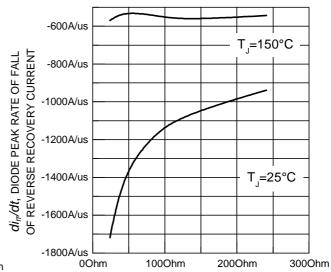
Figure 23. Typical reverse recovery time as a function of diode current slope

 V_{R} =800V, I_{F} =3A,

Dynamic test circuit in Figure E)

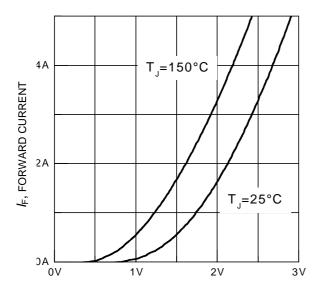
 R_{G} , GATE RESISTANCE


Figure 24. Typical reverse recovery charge as a function of diode current slope


 $(V_R=800V, I_F=3A,$

Dynamic test circuit in Figure E)

 $t_{
m r}$, REVERSE RECOVERY TIME



R_G, GATE RESISTANCE

Figure 25. Typical reverse recovery current as a function of diode current slope

(V_R =800V, I_F =3A, Dynamic test circuit in Figure E)

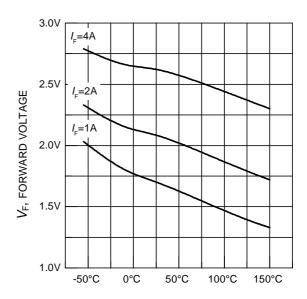
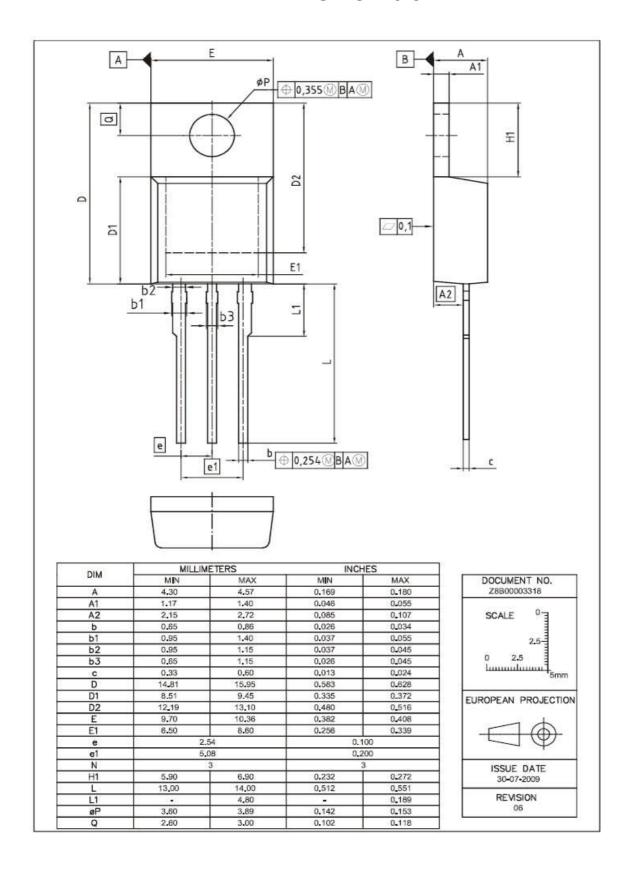

 $V_{
m F}$, FORWARD VOLTAGE

Figure 27. Typical diode forward current as a function of forward voltage

$R_{\rm G}$, GATE RESISTANCE

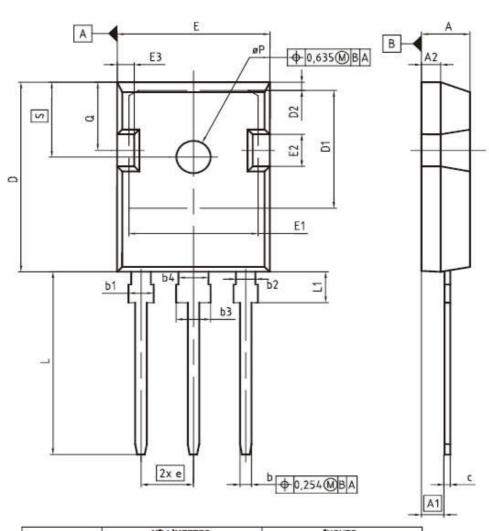
Figure 26. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope

(V_R =800V, I_F =3A, Dynamic test circuit in Figure E)

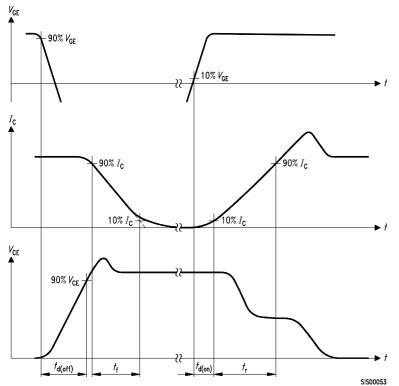


 $T_{
m J}$, JUNCTION TEMPERATURE

Figure 28. Typical diode forward voltage as a function of junction temperature



PG-TO220-3


PG-TO247-3

DIM	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
A	4.83	5.21	0.190	0.205	
A1	2,27	2,54	0,089	0,100	
A2	1.85	2.16	0,073	0.085	
b	1.07	1,33	0.042	0.052	
b1	1,90	2.41	0.075	0.095	
b2	1.90	2.16	0.075	0.085	
b3	2.87	3,38	0,113	0,133	
b4	2,87	3,13	0.113	0,123	
c	0.55	0.68	0.022	0.027	
D	20,80	21.10	0.819	0.831	
D1	16.25	17.65	0.640	0.695	
D2	0.95	1.35	0.037	0,053	
E	15,70	16,13	0,618	0,635	
E1	13.10	14.15	0.516	0.557	
E2	3,68	5.10	0.145	0.201	
E3	1.00	2,60	0.039	0.102	
6	5.	5.44 (BSC)		214 (BSC)	
N	1	3		3	
L	19.80	20,32	0.780	0,800	
L1	4.10	4.47	0.161	0,176	
øΡ	3,50	3.70	0.138	0.146	
Q	5.49	6.00	0.216	0.236	
s	6.04	6.30	0.238	0.248	

DOCUME ZBB000	ENT NO. 03327
SCALE	F°
0 L	5 5 7.5mm
EUROPEAN	PROJECTION
+	 •
ISSUE 09-07	DATE -2010
	SION 15

 $di_{F}/dt \qquad t_{rr} = t_{S} + t_{F}$ $Q_{rr} = Q_{S} + Q_{F}$ $t_{rr} = t_{S} + t_{F}$ $Q_{rr} = Q_{S} + Q_{F}$ $Q_{s} = Q_{S} + Q_{F}$ $Q_{rr} = Q_{S} + Q_{F}$ $Q_{rr} = Q_{S} + Q_{F}$ $Q_{s} = Q_{S} + Q_{F}$ $Q_{s} = Q_{S} + Q_{F}$ $Q_{s} = Q_{S} + Q_{F}$ $Q_{rr} = Q_{S} + Q_{F}$ $Q_{rr} = Q_{S} + Q_{F}$ $Q_{s} = Q_{S} + Q_{F}$ $Q_{rr} = Q_{S} + Q_{F}$ $Q_{s} = Q_{S} + Q_{F}$ $Q_{rr} = Q_{S} + Q_{F$

Figure C. Definition of diodes switching characteristics

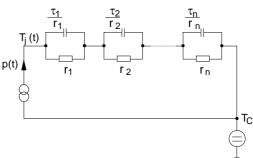


Figure A. Definition of switching times

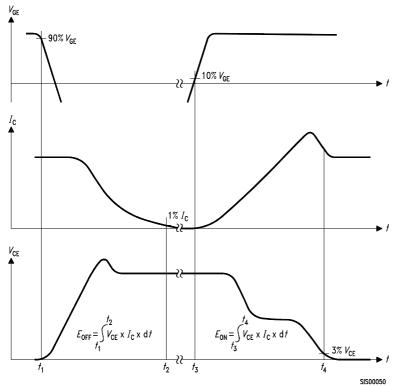


Figure D. Thermal equivalent circuit

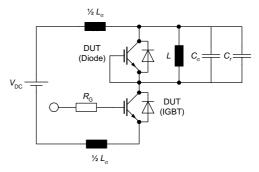


Figure E. Dynamic test circuit Leakage inductance $L_{\sigma} = 180 nH$, Stray capacitor $C_{\sigma} = 40 pF$, Relief capacitor $C_{r} = 4 nF$ (only for ZVT switching)

Figure B. Definition of switching losses

Published by Infineon Technologies AG 81726 Munich, Germany © 2013 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.