

TrenchStop[®] 2nd generation Series

Thermal Resistance

Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic				
IGBT thermal resistance,	R _{thJC}		0.63	K/W
junction – case				
Diode thermal resistance,	R _{thJCD}		1.12	
junction – case				
Thermal resistance,	R _{thJA}		40	
junction – ambient				

Electrical Characteristic, at T_j = 25 °C, unless otherwise specified

Parameter	Symbol	Conditions	Value			11
			min.	typ.	max.	Unit
Static Characteristic						
Collector-emitter breakdown voltage	V _{(BR)CES}	$V_{\rm GE} = 0V, I_{\rm C} = 500 \mu A$	1200	-	-	V
Collector-emitter saturation voltage	V _{CE(sat)}	$V_{\rm GE} = 15 V, I_{\rm C} = 15 A$				
		T _j =25°C	-	1.7	2.2	
		<i>T</i> _j =150°C	-	2.1	-	
		<i>T</i> _j =175°C	-	2.2	-	
Diode forward voltage	V _F	$V_{\rm GE} = 0V, I_{\rm F} = 15A$				
		<i>T</i> _j =25°C	-	1.75	2.2	
		<i>T</i> _j =150°C	-	1.8	-	
		<i>T</i> _j =175°C	-	1.75	-	
Gate-emitter threshold voltage	V _{GE(th)}	$I_{\rm C}=0.6{\rm mA}, V_{\rm CE}=V_{\rm GE}$	5.2	5.8	6.4	
Zero gate voltage collector current	I _{CES}	V _{CE} =1200V, V _{GE} =0V				mA
		<i>T</i> _j =25°C	-	-	0.4	
		<i>T</i> _j =150°C	-	-	4.0	
		<i>T</i> _j =175°C	-	-	20	
Gate-emitter leakage current	I _{GES}	$V_{\rm CE} = 0 \rm V, V_{\rm GE} = 20 \rm V$	-	-	600	nA
Transconductance	$g_{ m fs}$	$V_{\rm CE}$ =20V, $I_{\rm C}$ =15A	-	8	-	S

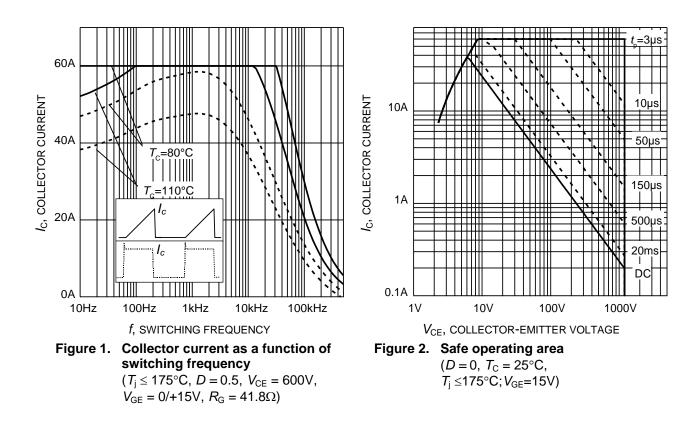
Dynamic Characteristic

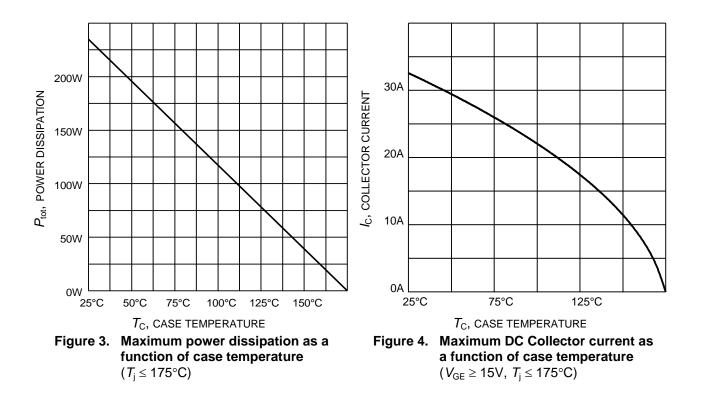
Input capacitance	Ciss	$V_{\rm CE}=25\rm V$,	-	1000	-	pF
Output capacitance	Coss	$V_{\rm GE}=0V$,	-	100	-	
Reverse transfer capacitance	Crss	f=1MHz	-	56	-	
Gate charge	Q _{Gate}	$V_{\rm CC} = 960 \text{V}, I_{\rm C} = 15 \text{A}$	-	93	-	nC
		$V_{GE}=15V$				
Internal emitter inductance	LE		-	13	-	nH
measured 5mm (0.197 in.) from case						
Short circuit collector current ¹⁾	I _{C(SC)}	$V_{GE} = 15V, t_{SC} \le 10 \mu s$ $V_{CC} = 600V,$	-		-	A
		$T_{j,start} = 25^{\circ}C$ $T_{j,start} = 175^{\circ}C$		82 60		

Switching Characteristic, Inductive Load, at $T_i=25$ °C

Parameter	Symbol	Conditions	Value			
			min.	typ.	max.	Unit
IGBT Characteristic		· ·				•
Turn-on delay time	t _{d(on)}	<i>T</i> _j =25°C,	-	32	-	ns
Rise time	t _r	$V_{\rm CC} = 600 \text{V}, I_{\rm C} = 15 \text{A},$	-	25	-	
Turn-off delay time	t _{d(off)}	$V_{\rm GE} = 0/15 V,$ $R_{\rm G} = 41.8 \Omega,$	-	362	-	
Fall time	t _f	$L_{\sigma}^{(2)} = 126 \text{ nH},$ $C_{\sigma}^{(2)} = 34 \text{ pF}$ Energy losses include "tail" and diode reverse recovery.	-	95	-	
Turn-on energy	Eon		-	1.25	-	mJ
Turn-off energy	E _{off}		-	0.8	-	
Total switching energy	Ets		-	2.05	-	
Anti-Parallel Diode Characteristic		· ·				
Diode reverse recovery time	t _{rr}	$T_{\rm j}=25^{\circ}{\rm C},$	-	300	-	ns
Diode reverse recovery charge	Q _{rr}	V _R =600V, I _F =15A, di _F /dt=450A/μs	-	1.3		μC
Diode peak reverse recovery current	l _{rrm}		-	10		А
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	di _{rr} /dt		-	215	-	A/µs

¹⁾ Allowed number of short circuits: <1000; time between short circuits: >1s. ²⁾ Leakage inductance L_{σ} and Stray capacity C_{σ} due to dynamic test circuit in Figure E.




Switching Characteristic, Inductive Load, at T_j =175 °C

Symbol	Conditions	Value			11
		min.	typ.	max.	Unit
					•
t _{d(on)}	<i>T</i> _j =175°C	-	31	-	ns
t _r	$V_{\rm CC} = 600 \text{V}, I_{\rm C} = 15 \text{A},$	-	30	-	
$t_{d(off)}$	• - ,	-	450	-	
<i>t</i> _f	$L_{\sigma}^{(1)}=315 \text{ nH},$ $C_{\sigma}^{(1)}=34 \text{ pF}$ Energy losses include "tail" and diode reverse recovery.	-	176	-	
Eon		-	1.5	-	mJ
E _{off}		-	1.3	-	
Ets		-	2.8	-	
t _{rr}	<i>T</i> _j =175°C	-	460	-	ns
Q _{rr}	V _R =600V, I _F =15A, di _F /dt=460A/μs	-	2.65	-	μC
I _{rrm}		-	13	-	А
di _{rr} /dt		-	123		A/μs
	$t_{d(on)}$ t_{r} $t_{d(off)}$ t_{f} E_{on} E_{off} E_{ts} t_{rr} Q_{rr} I_{rrm}	$\begin{array}{c c} t_{d(on)} & T_{j} = 175 ^{\circ}\text{C} \\ \hline t_{r} & V_{CC} = 600 ^{\circ}\text{V}_{C} = 15 ^{\circ}\text{A}, \\ \hline V_{GE} = 0/15 ^{\circ}\text{V}, \\ \hline t_{d(off)} & R_{G} = 41.8 ^{\circ}\Omega, \\ \hline t_{f} & L_{\sigma}^{-1} = 315 ^{\circ}\text{H}, \\ \hline E_{on} & C_{\sigma}^{-1} = 34 ^{\circ}\text{F} \\ \hline E_{nergy} ^{\circ}\text{losses include} \\ \hline E_{ts} & \text{reverse recovery.} \\ \hline \hline t_{rr} & T_{j} = 175 ^{\circ}\text{C} \\ \hline Q_{rr} & V_{R} = 600 ^{\circ}\text{V}, I_{F} = 15 ^{\circ}\text{A}, \\ \hline I_{rrm} & di_{F}/dt = 460 ^{\circ}\text{A} ^{\mu}\text{s} \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Symbol Conditions min. typ. $t_{d(on)}$ $T_j=175^{\circ}C$ - 31 t_r $V_{CC}=600V, I_C=15A,$ - 30 $t_{d(off)}$ $R_G=0/15V,$ - 450 t_f $L_{\sigma}^{-1}=315nH,$ - 176 E_{on} $C_{\sigma}^{-1}=34pF$ - 1.5 Energy losses include - 1.3 E_{off} "reverse recovery. - 2.8 t_{rr} $T_j=175^{\circ}C$ - 460 Q_{rr} $V_R=600V, I_F=15A,$ - 2.65 I_{rrm} $di_F/dt=460A/\mu s$ - 13	Symbol Conditions min. typ. max. $t_{d(on)}$ $T_j=175^{\circ}C$ - 31 - t_r $V_{CC}=600V, I_C=15A,$ - 30 - t_r $V_{CC}=600V, I_C=15A,$ - 30 - $t_{d(off)}$ $R_G=41.8\Omega,$ - 450 - t_{f} $L_{\sigma}^{-1}=315nH,$ - 176 - E_{on} $C_{\sigma}^{-1}=34\rho F$ - 1.5 - Energy losses include - 1.3 - - E_{off} "reverse recovery. - 2.8 - t_{rr} $T_j=175^{\circ}C$ - 460 - Q_{rr} $V_R=600V, I_F=15A,$ - 2.65 - l_{rrm} $di_F/dt=460A/\mu s$ - 13 -

¹⁾ Leakage inductance L_{σ} and Stray capacity C_{σ} due to dynamic test circuit in Figure E.

Downloaded from Arrow.com.

TrenchStop[®] 2nd generation Series

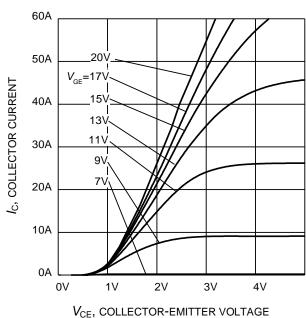
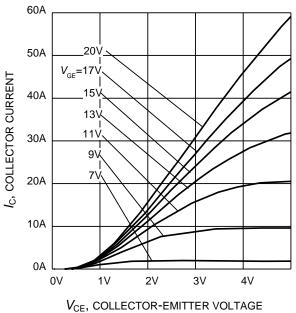
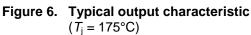
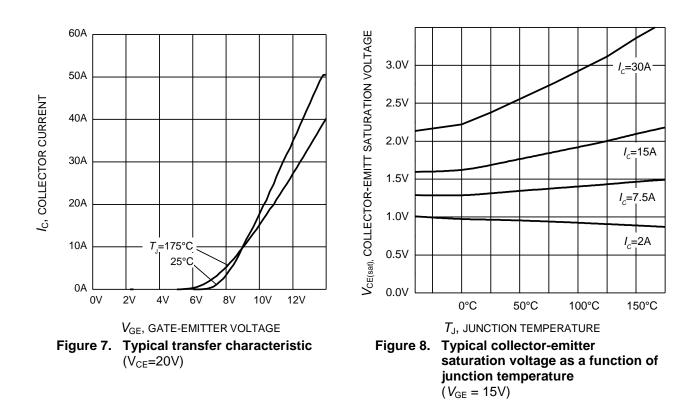
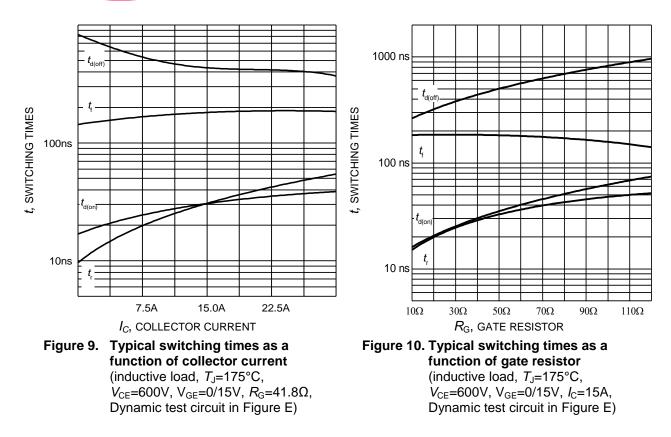
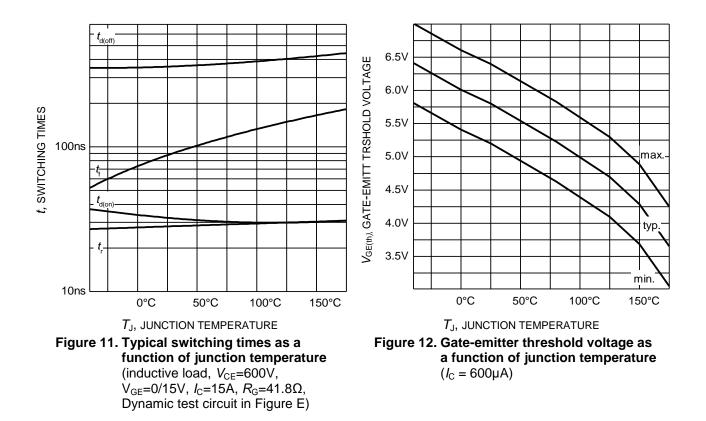
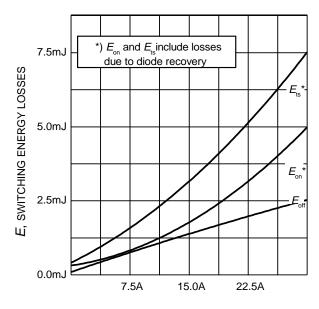





Figure 5. Typical output characteristic $(T_i = 25^{\circ}C)$





TrenchStop[®] 2nd generation Series



7

TrenchStop[®] 2nd generation Series

 $I_{\rm C}$, COLLECTOR CURRENT

Figure 13. Typical switching energy losses as a function of collector current (inductive load, T_J =175°C, V_{CE} =600V, V_{GE} =0/15V, R_G =41.8 Ω , Dynamic test circuit in Figure E)

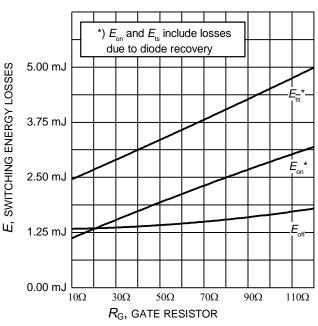


Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, $T_J=175^{\circ}C$, $V_{CE}=600V$, $V_{GE}=0/15V$, $I_C=15A$, Dynamic test circuit in Figure E)

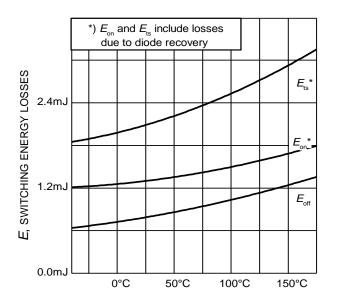
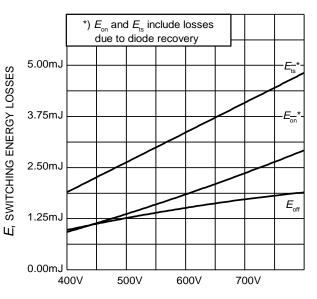
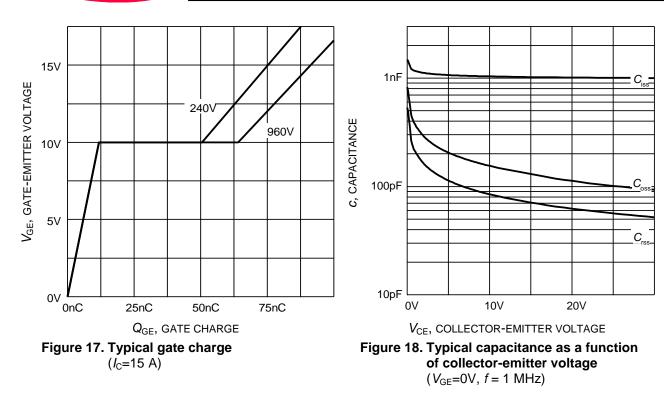
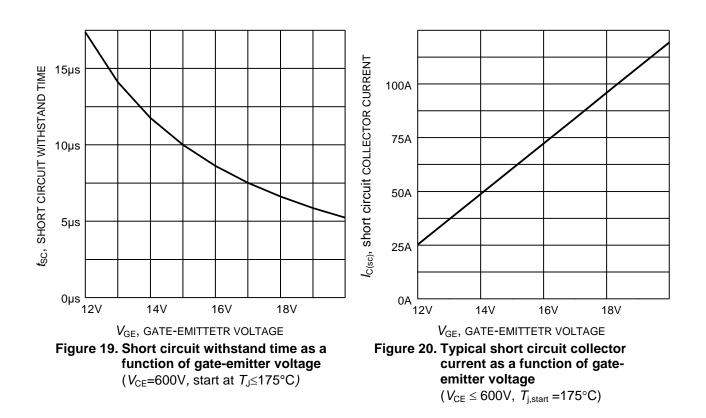


Figure 15. Typical switching energy losses as a function of junction temperature

(inductive load, V_{CE} =600V, V_{GE}=0/15V, I_C =15A, R_G =41.8 Ω , Dynamic test circuit in Figure E)




Figure 16. Typical switching energy losses as a function of collector emitter voltage (inductive load, T_J =175°C,


(inductive load, $I_J=175^{\circ}$ C, V_{GE}=0/15V, $I_C=15A$, $R_G=41.8\Omega$, Dynamic test circuit in Figure E)

Downloaded from Arrow.com.

TrenchStop[®] 2nd generation Series

600V

400V

200V

0V

1.2us

TrenchStop[®] 2nd generation Series

₩

Ш

(s)

τ,

3.06 '10

3.47*10

1.71*10

2.63*10

 R_2

R

100ms

10ms

R(K/W)

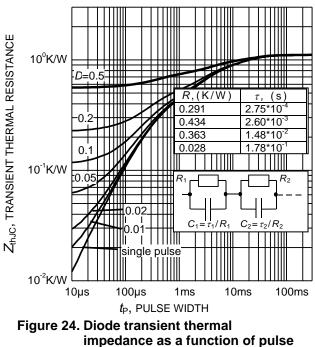
0.143

0.217 0.258

0.017

1ms

t_P, PULSE WIDTH


Figure 23. IGBT transient thermal resistance

0.02 4**₩**₩ ••••••••••

single

100µs

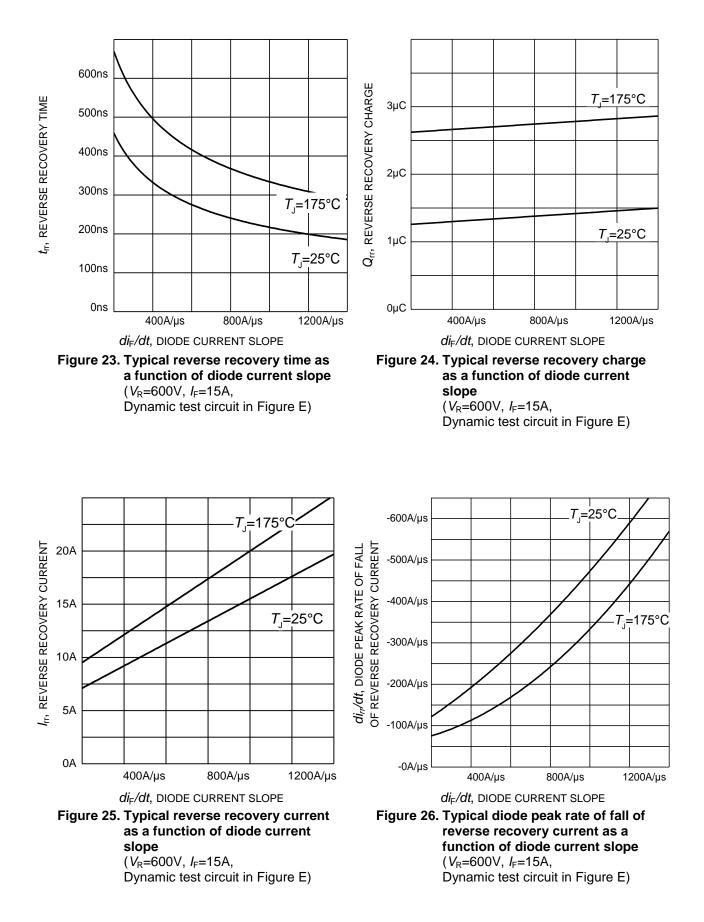
 $(D = t_p / T)$

width $(D=t_{\rm P}/T)$

10µs

10°K/W

10⁻¹K/W


10⁻²K/W

=0

 $Z_{
m thJC}$, TRANSIENT THERMAL RESISTANCE

TrenchStop[®] 2nd generation Series

IFAG IPC TD VLS

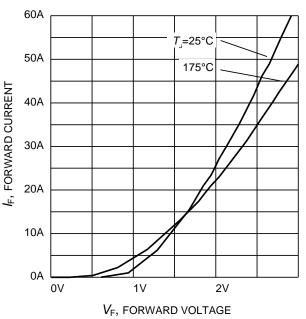
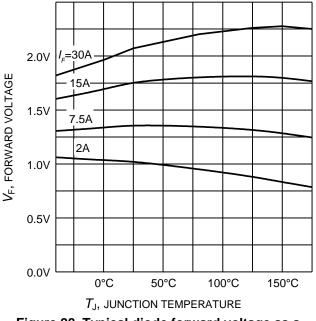
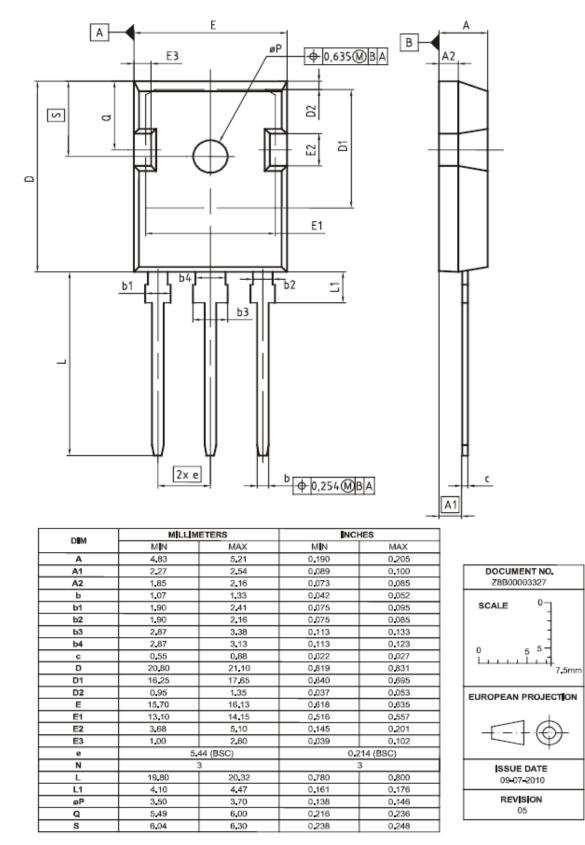


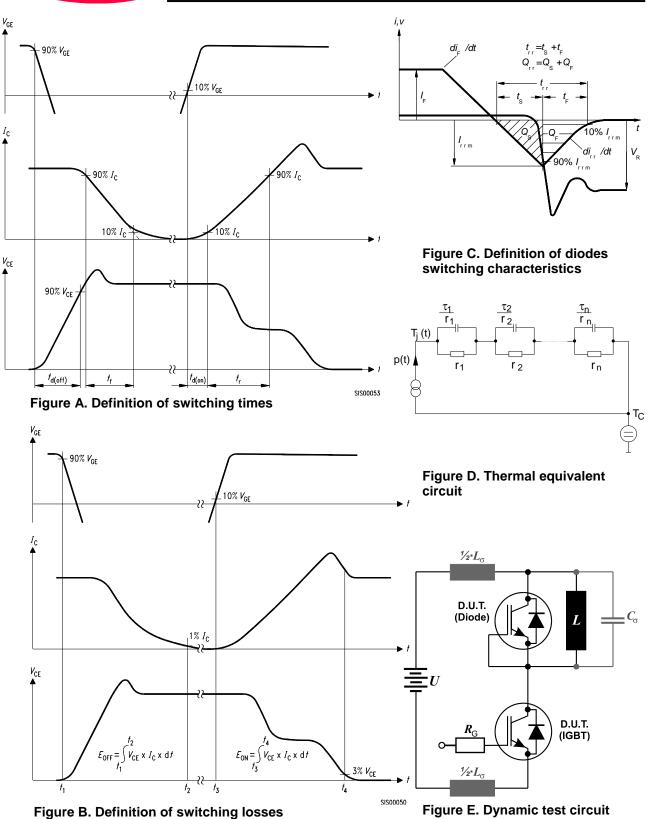
Figure 27. Typical diode forward current as a function of forward voltage




Figure 28. Typical diode forward voltage as a function of junction temperature

.

TrenchStop[®] 2nd generation Series


PG-TO247-3

IFAG IPC TD VLS

TrenchStop[®] 2nd generation Series

TrenchStop[®] 2nd generation Series

Published by Infineon Technologies AG 81726 Munich, Germany © 2013 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.