Ordering Information

Part Number	Package Option	Packing
HV20220FG-G	48-Lead LQFP	250/Tray
HV20220FG-G M931	48-Lead LQFP	1000/Reel
HV20220PJ-G	28-Lead PLCC	38/Tube
HV20220PJ-G M904	28-Lead PLCC	500/Reel

⁻G denotes a lead (Pb)-free / RoHS compliant package

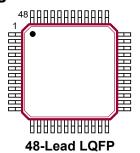
Absolute Maximum Ratings

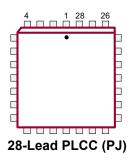
Parameter	Value
V _{DD} logic power supply voltage	-0.5V to +15V
V _{PP} - V _{NN} supply voltage	220V
V _{PP} positive high voltage supply	-0.5V to V _{NN} +200V
V _{NN} negative high voltage supply	+0.5V to -200V
Logic input voltages	-0.5V to V _{DD} +0.3V
Analog signal range	V_{NN} to V_{PP}
Peak analog signal current/channel	3.0A
Storage temperature	-65°C to +150°C
Power dissipation:	
48-Lead LQFP	1.0W
28-JLead PLCC	1.2W

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

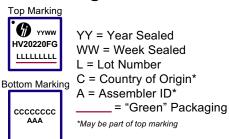
Typical Thermal Resistance

Package	θ_{j_a}
48-Lead LQFP	52°C/W
28-Lead PLCC	48°C/W

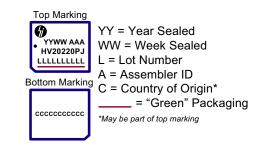

Operating Conditions


Sym	Parameter	Value
$V_{_{\mathrm{DD}}}$	Logic power supply voltage ^{1,3}	4.5V to 13.2V
V_{PP}	Positive high voltage supply ^{1,3}	40V to V _{NN} +200V
V _{NN}	Negative high voltage supply ^{1,3}	-40V to -160V
V _{IH}	High level input voltage	V_{DD} -1.5V to V_{DD}
V _{IL}	Low-level input voltage	0V to 1.5V
V _{SIG}	Analog signal voltage peak-to-peak	V_{NN} +10V to V_{PP} -10V ²
T _A	Operating free air temperature	0°C to 70°C

Notes:


- Power up/down sequence is arbitrary except GND must be powered-up first and powered-down last.
- 2. V_{SIG} must be $V_{NN} \le V_{SIG} \le V_{PP}$ or floating during power-up/down transition.
- 3. Rise and fall times of power supplies $V_{\rm DD}$, $V_{\rm PP}$ and $V_{\rm NN}$ should not be less than 1.0msec.

Pin Configuration



Product Marking

Package may or may not include the following marks: Si or

48-Lead LQFP

Package may or may not include the following marks: Si or **9 28-Lead PLCC**

www.supertex.com

DC Electrical Characteristics

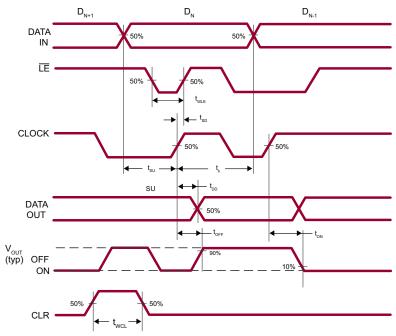
(Over operating conditions unless otherwise specified)

	rating conditions unless otherwise speci		C		+25°C		+70)°C				
Sym	Parameter	Min	Max	Min	Тур	Max	Min	Max	Unit	Conditions		
		-	30 25	-	26 22	38 27	-	48 32		$I_{SIG} = 5.0 \text{mA}$ $V_{PP} = +40 \text{V}$ $V_{NN} = -160 \text{V}$		
R _{ONS}	Small signal switch on-resis-	-	25	-	22	27	-	30	Ω	$I_{SIG} = 5.0 \text{mA}$ $V_{PP} = +100 \text{V}$		
ONO	tance	-	18	-	18	24	-	27		$I_{SIG} = 200 \text{mA}$ $V_{NN}^{rr} = -100 \text{V}$		
		-	23	-	20	25	-	30		$I_{SIG} = 5.0 \text{mA}$ $V_{PP} = +160 \text{V}$		
		-	22	-	16	25	-	27		$I_{SIG} = 200 \text{mA}$ $V_{NN} = -40 \text{V}$		
ΔR _{ons}	Small signal switch on-resistance matching	-	20	-	5.0	20	-	20	%	$I_{SIG} = 5.0 \text{mA}, V_{PP} = +100 \text{V}, V_{NN} = -100 \text{V}$		
R _{ONL}	Large signal switch on-resistance	-	-	-	15	-	-	-	Ω	$V_{SIG} = V_{PP} - 10V, I_{SIG} = 1.0A$		
I _{SOL}	Switch off leakage per switch	-	5.0	-	1.0	10	-	15	μΑ	$V_{SIG} = V_{PP} -10V, V_{NN} +10V$		
V _{os}	DC offset switch off	-	300	-	100	300	-	300	mV	$R_L = 100k\Omega$		
os	DC offset switch on	-	500	-	100	500	-	500	mV	$R_L = 100k\Omega$		
I _{PPQ}	Quiescent V _{PP} supply current	-	-	-	10	50	-	-	μΑ	All switches off		
I _{NNQ}	Quiescent V _{NN} supply current	-	-	-	-10	-50	-	-	μΑ	All switches off		
l _{PPQ}	Quiescent V _{PP} supply current	-	_	-	10	50	-	-	μΑ	All switches on, I _{sw} = 5.0mA		
I _{NNQ}	Quiescent V _{NN} supply current	-	_	-	-10	-50	-	-	μΑ	All switches on, I _{sw} = 5.0mA		
I _{sw}	Switch output peak current	-	3.0	-	3.0	2.0	-	2.0	Α	V _{SIG} duty cycly < 0.1%		
f _{sw}	Output switching frequency	-	_	-	-	50	-	-	kHz	Duty cycle = 50%		
		-	6.5	-	-	7.0	-	8.0		$V_{PP} = +40V$ $V_{NN} = -160V$ All output switches are		
I _{PP}	Supply current	-	4.0	-	-	5.0	-	5.5	mA	$V_{PP} = +100V$ turning On $V_{NN} = -100V$ and Off at		
		-	4.0	-	-	5.0	-	5.5		$V_{PP} = +160V$ $V_{NN} = -40V$ 50kHz with no load		
		-	6.5	-	-	7.0	-	8.0		$V_{PP} = +40V$ $V_{NN} = -160V$ All output switches are		
I _{NN}	Supply curent	-	4.0	-	-	5.0	-	5.5	mA	$V_{PP} = +100V$ turning On $V_{NN} = -100V$ and Off at		
		-	4.0	-	-	5.0	-	5.5		$V_{PP} = +160V$ $V_{NN} = -40V$ 50kHz with no load		
I _{DD}	Logic supply average current	-	4.0	-	-	4.0	-	4.0	mA	$f_{CLK} = 5.0MHz, V_{DD} = 5.0V$		
I _{DDQ}	Logic supply quiescent cur- rent	-	10	-	-	10	-	10	μΑ			
I _{SOR}	Data out source current	0.45	-	0.45	0.70	-	0.40	-	mA	$V_{OUT} = V_{DD} - 0.7V$		
ISINK	Data out sink current	0.45	-	0.45	0.70	-	0.40	-	mA	V _{OUT} = 0.7V		
C _{IN}	Logic input capacitance	-	10	-	-	10	-	10	pF			

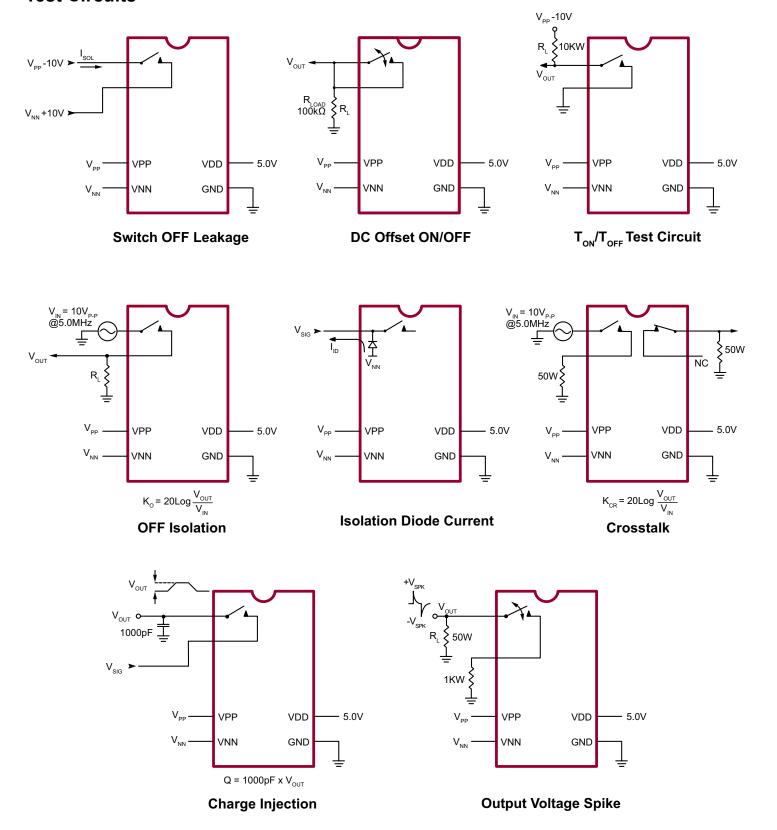
AC Electrical Characteristics

(Over recommended operating conditions: V_{DD} = 5.0V, unless otherwise specified)

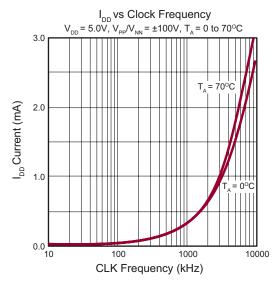
	Tillinended Operating Conditions. V _{DD} = 3.	1	C		+25°C		+70	o°C		
Sym	Parameter	Min	Max	Min	Тур	Max	Min	Max	Unit	Conditions
t _{sd}	Set up time before LE rises	150	-	150	-	-	150	-	ns	
t _{wle}	Time width of LE	150	-	150	-	-	150	-	ns	
t _{DO}	Clock delay time to data out	-	150	-	-	150	-	150	ns	
t _{wcl}	Time width of CL	150	-	150	-	-	150	-	ns	
t _{su}	Set up time data to clock	15	-	15	8.0	-	20	-	ns	
t _H	Hold time data from clock	35	_	35	-	-	35	-	ns	
f _{CLK}	Clock frequency	-	5.0	-	-	5.0	-	5.0	MHz	50% Duty cycle, f _{DATA} = f _{CLK} /2
t_R, t_F	Clock rise and fall times	-	50	-	-	50	-	50	ns	
t _{on}	Turn on time	-	5.0	-	-	5.0	-	5.0	μs	$V_{SIG} = V_{PP}$ -10V, $R_{LOAD} = 10k\Omega$
t _{OFF}	Turn off time	-	5.0	-	-	5.0	-	5.0	μs	$V_{SIG} = V_{PP}$ -10V, $R_{LOAD} = 10k\Omega$
		-	20	-	-	20	-	20		$V_{PP} = +160V, V_{NN} = -40V$
dv/dt	Maximun V _{SIG} slew rate	-	20	-	-	20	-	20	V/ns	$V_{PP} = +100V, V_{NN} = -100V$
		-	20	-	-	20	_	20		$V_{PP} = +40V, V_{NN} = -160V$
K _o	Off isolation	-30	-	-30	-33	-	-30	-	dB	f = 5.0MHz, 1.0kΩ/15pF load
, o	Oli isolation	-58	-	-58	-	-	-58	-	ub	f = 5.0MHz, $50Ω$ load
K _{CR}	Switch crosstalk	-60	-	-60	-70	-	-60	-	dB	f = 5.0MHz, $50Ω$ load
I _{ID}	Output switch isolation diode current	-	300	-	-	300	-	300	mA	300ns pulse width, 2.0% duty cycle
C _{SG(OFF)}	Off capacitance SW to GND	5.0	17	5.0	12	17	5.0	17	pF	0V, f = 1.0MHz
C _{SG(ON)}	On capacitance SW to GND	25	50	25	38	50	25	50	pF	0V, f = 1.0MHz
+V _{SPK}		_	-	-	-	150	-	-		$V_{PP} = +40V, V_{NN} = -160V,$ $R_{LOAD} = 50\Omega$
-V _{SPK}		_	-	-	-	150	-	-		$R_{LOAD} = 50\Omega$
+V _{SPK}	Output voltage spike	_	-	-	-	150	-	-	mV	$V_{PP} = +100V, V_{NN} = -100V,$
-V _{SPK}	Output voltage spike	_	-	-	-	150	-	-	IIIV	$R_{LOAD} = 50\Omega$
+V _{SPK}		_	-	-	-	150	_	-		V _{PP} = +160V, V _{NN} = -40V,
-V _{SPK}		-	-	-	-	150	_	-		$R_{LOAD} = 50\Omega$
		-	-	-	820	-	-	-		$V_{PP} = +40V, V_{NN} = -160V, V_{SIG} = 0V$
QC	Charge injection	-	-	-	600	-	-	-	pC	$V_{PP} = +100V, V_{NN} = -100V,$ $V_{SIG} = 0V$
		-	-	-	350	-	-	-		$V_{PP} = +160V, V_{NN} = -40V, V_{SIG} = 0V$

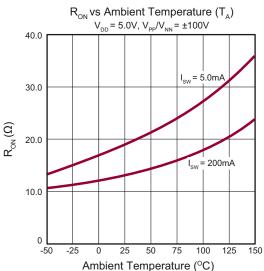

Truth Table

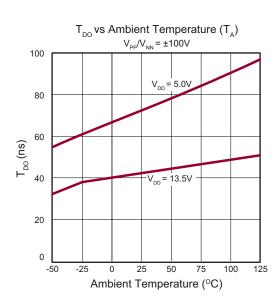
D0	D1	D2	D3	D4	D5	D6	D7	LE	CLR	SW0	SW1	SW2	SW3	SW4	SW5	SW6	SW7
L								L	L	Off							
Н								L	L	On							
	L							L	L		Off						
	Н							L	L		On						
		L						L	L			Off					
		Н						L	L			On					
			L					L	L				Off				
			Н					L	L				On				
				L				L	L					Off			
				Н				L	L					On			
					L			L	L						Off		
					Н			L	L						On		
						L		L	L							Off	
						Н		L	L							On	
							L	L	L								Off
							Н	L	L								On
Х	X	Х	Х	Х	Х	Х	X	Н	L	Hold Previous State							
Х	Х	Х	Х	Х	Х	Х	Х	Х	Н			A	II Swit	ches O	ff		

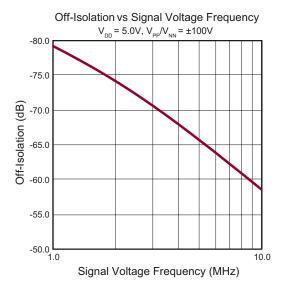

Notes:

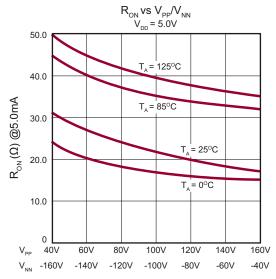
- 1. The eight switches operate independently.
- 2. Serial data is clocked in on the L to H transition of the CLK.
- 3. The switches go to a state retaining their present condition at the rising edge of LE. When LE is low the shift register data flow through the latch.
- 4. D_{OUT} is high when data in the shift register 7 is high.
- 5. Shift register clocking has no effect on the switch states if \overline{LE} is high.
- 6. The CLR clear input overrides all other inputs.

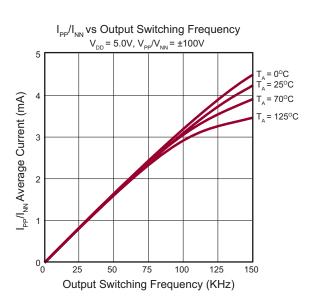

Logic Timing Waveforms



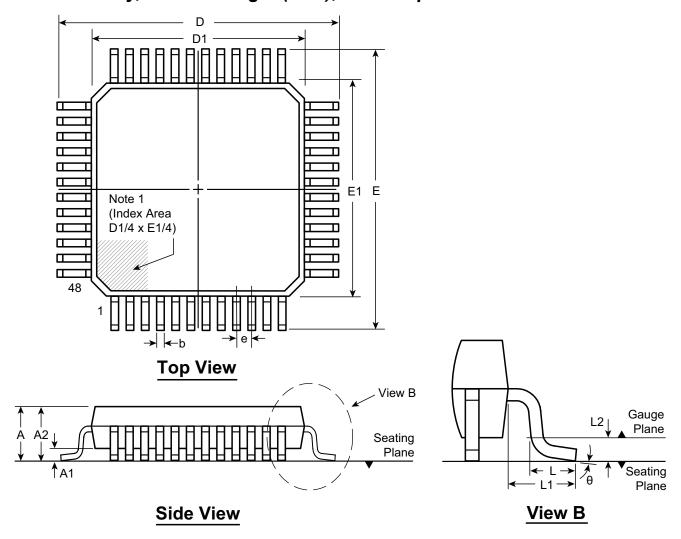

Test Circuits




Typical Performance Curves



Pin Description - 48-Lead LQFP


Pin	Name	Pin	Name		
1	SW5	25	VNN		
2	N/C	26	N/C		
3	SW4	27	N/C		
4	N/C	28	GND		
5	SW4	29	VDD		
6	N/C	30	N/C		
7	N/C	31	N/C		
8	SW3	32	N/C		
9	N/C	33	DIN		
10	SW3	34	CLK		
11	N/C	35	<u>LE</u>		
12	SW2	36	CLR		
13	N/C	37	DOUT		
14	SW2	38	N/C		
15	N/C	39	SW7		
16	SW1	40	N/C		
17	N/C	41	SW7		
18	SW1	42	N/C		
19	N/C	43	SW6		
20	SW0	44	N/C		
21	N/C	45	SW6		
22	SW0	46	N/C		
23	N/C	47	SW5		
24	VPP	48	N/C		

Pin Description - 28-Lead PLCC

Pin	Name	Pin	Name
1	SW3	15	N/C
2	SW3	16	DIN
3	SW2	17	CLK
4	SW2	18	ĪĒ
5	SW1	19	CL
6	SW1	20	DOUT
7	SW0	21	SW7
8	SW0	22	SW7
9	N/C	23	SW6
10	VPP	24	SW6
11	N/C	25	SW5
12	VNN	26	SW5
13	GND	27	SW4
14	VDD	28	SW4

48-Lead LQFP Package Outline (FG)

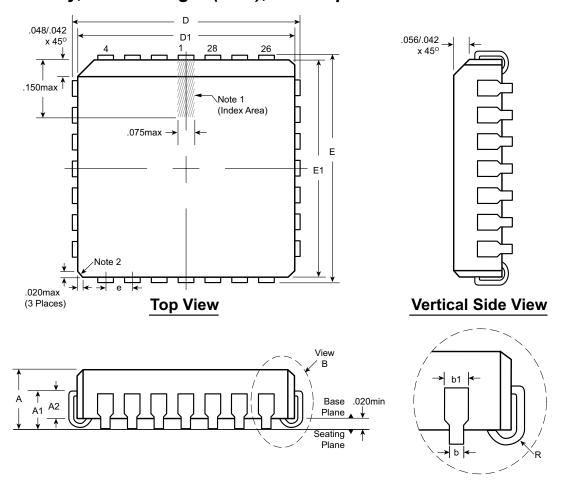
7.00x7.00mm body, 1.60mm height (max), 0.50mm pitch

Note:

 A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbo	ol	Α	A1	A2	b	D	D1	E	E1	е	L	L1	L2	
Dimension (mm)	MIN	1.40*	0.05	1.35	0.17	8.80*	6.80*	8.80*	6.80*	0.50 BSC 0.60 0.75	0.45			0 o
	NOM	-	-	1.40	0.22	9.00	7.00	9.00	7.00		0.60	1.00 REF	0.25 BSC	3.5°
	MAX	1.60	0.15	1.45	0.27	9.20*	7.20*	9.20*	7.20*				7 °	

JEDEC Registration MS-026, Variation BBC, Issue D, Jan. 2001.


Drawings are not to scale.

Supertex Doc. #: DSPD-48LQFPFG Version, D041309.

^{*} This dimension is not specified in the JEDEC drawing.

28-Lead PLCC Package Outline (PJ)

.453x.453in. body, .180in. height (max), .050in. pitch

Notes:

- A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.
- Actual shape of this feature may vary.

Symbo	l	Α	A1	A2	b	b1	D	D1	E	E1	е	R
Dimension (inches)	MIN	.165	.090	.062	.013	.026	.485	.450	.485	.450		.025
	NOM	.172	.105	-	-	-	.490	.453	.490	.453	.050 BSC	.035
	MAX	.180	.120	.083	.021	.032	.495	.456	.495	.456	BSC	.045

JEDEC Registration MS-018, Variation AB, Issue A, June, 1993.

Drawings not to scale.

Supertex Doc. #: DSPD-28PLCCPJ, Version B031111.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the **Supertex inc.** (website: http://www.supertex.com)

©2013 **Supertex inc.** All rights reserved. Unauthorized use or reproduction is prohibited.

