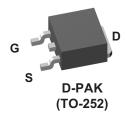
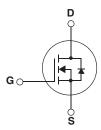


ON Semiconductor®

FDD5810-F085

N-Channel Logic Level Trench[®]MOSFET 60V, 36A, 27m Ω


Features


- $R_{DS(ON)} = 22m\Omega$ (Typ.), $V_{GS} = 5V$, $I_D = 29A$
- $Q_{q(5)} = 13nC$ (Typ.), $V_{GS} = 5V$
- Low Miller Charge
- Low Q_{rr} Body Diode
- UIS Capability (Single Pulse / Repetitive Pulse)
- Qualified to AEC Q101
- RoHS Compliant

Applications

- Motor / Body Load Control
- ABS Systems
- Powertrain Management
- Injection System
- DC-DC converters and Off-line UPS
- Distributed Power Architecture and VRMs
- Primary Switch for 12V and 24V systems

Absolute Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Ratings	Units
V _{DSS}	Drain to Source Voltage	60	V
V _{GS}	Gate to Source Voltage	±20	V
	Drain Current Continuous (V _{GS} = 10V)	37	Α
	Drain Current Continuous (V _{GS} = 5V)	33	Α
'D	Continuous ($T_A = 25^{\circ}$ C, $V_{GS} = 10$ V, with $R_{\theta JA} = 52^{\circ}$ C/W)	7.4	Α
	Pulsed	Figure 4	Α
E _{AS}	Single Pulse Avalanche Energy (Note 1)	45	mJ
	Power Dissipation	72	W
P_{D}	Derate above 25°C	0.48	W/°C
T _J , T _{STG}	Operating and Storage Temperature	-55 to 175	°C

Thermal Characteristics

$R_{\theta JC}$	Maximum Thermal resistance Junction to Case TO-252	2.1	°C/W
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-252, 1in ² copper pad area	52	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDD5810	FDD5810-F085	TO-252AA	330mm	16mm	2500 units

Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

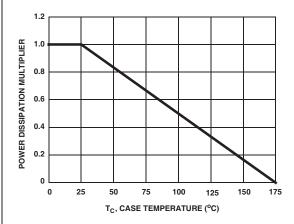
Symbol	Parameter	Test Co	nditions	Min	Тур	Max	Units
Off Chara	octeristics						
B _{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{G}$	S = 0V	60	-	-	V
1	Zero Gate Voltage Drain Current	V _{DS} = 48V		-	-	1	^
IDSS		$V_{GS} = 0V$	$T_{\rm C} = 150^{\rm o}{\rm C}$	-	-	250	μΑ
I_{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$		-	-	±100	nA

On Characteristics

V _{GS(TH)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	1	1.6	2	V
R _{DS(ON)}	Drain to Source On Resistance	$I_D = 32A, V_{GS} = 10V$	-	18	22	
		$I_D = 29A, V_{GS} = 5V$	-	22	27	mΩ
		$I_D = 32A, V_{GS} = 10V,$ $T_{.1} = 175^{\circ}C$	-	43	53	11152

Dynamic Characteristics

C _{iss}	Input Capacitance	V 05V V 0V	-	1420	1890	pF
C _{oss}	Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$ $V_{DS} = 1MHz$	-	150	200	pF
C _{rss}	Reverse Transfer Capacitance	1 = 11011 12	-	65	100	pF
R _G	Gate Resistance	f = 1MHz	-	3.5	-	Ω
Qg	Total Gate Charge at 10V	V _{GS} = 0V to 10V	-	24	34	nC
Q_g	Total Gate Charge at 5V	V _{GS} = 0V to 5V	-	13	18	nC
Q _{g(th)}	Threshold Gate Charge	$V_{GS} = 0V \text{ to } 1V$ $V_{DD} = 30V$ $I_{D} = 35A$	-	1.3	-	nC
Q _{gs}	Gate to Source Gate Charge	1 _D = 35A	-	4.0	-	nC
Q _{gs} Q _{gs2}	Gate Charge Threshold to Plateau		-	2.7	-	nC
Q_{gd}	Gate to Drain "Miller" Charge		-	5.0	-	nC


Switch	ing Characteristics					
t _{on}	Turn-On Time		-	-	130	ns
t _{d(on)}	Turn-On Delay Time		-	12	-	ns
t _r	Rise Time	$V_{DD} = 30V, I_{D} = 35A$	-	75	-	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 5V, R_{GS} = 11\Omega$	-	26	-	ns
t _f	Fall Time		-	34	-	ns
$t_{\rm off}$	Turn-Off Time		-	-	90	ns

Drain-Source Diode Characteristics

V _{SD}	ISource to Drain Diode Voltage	I _{SD} = 32A	-	-	1.25	V
		I _{SD} = 16A	-	-	1.0	V
t _{rr}	Reverse Recovery Time	I _F = 35A, di/dt = 100A/μs	-	-	39	ns
Q _{rr}	Reverse Recovery Charge	I _F = 35A, di/dt = 100A/μs	-	-	35	nC

Notes: 1: Starting $T_J = 25^{\circ}C$, $L = 110\mu H$, $I_{AS} = 28A$, $V_{DD} = 54V$, $V_{GS} = 10V$.

Typical Characteristics T_J = 25°C unless otherwise noted

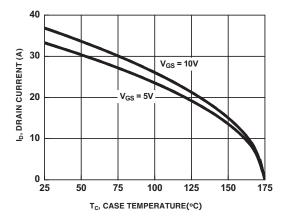


Figure 1. Normalized Power Dissipation vs Case **Temperature**

Figure 2. Maximum Continuous Drain Current vs **Case Temperature**

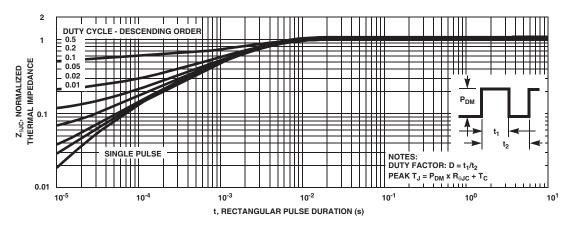


Figure 3. Normalized Maximum Transient Thermal Impedance

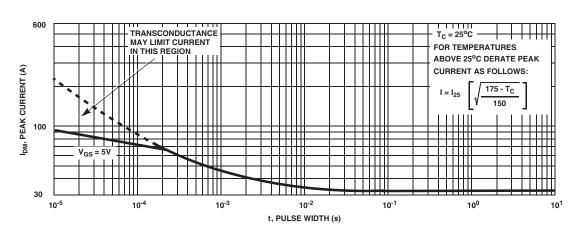


Figure 4. Peak Current Capability

Typical Characteristics $T_J = 25$ °C unless otherwise noted

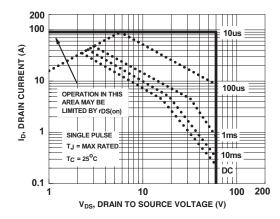
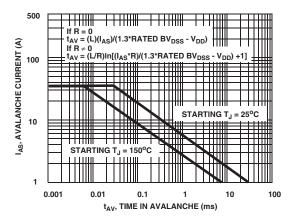



Figure 5. Forward Bias Safe Operating Area

NOTE: Refer to ON Semiconductor Application Notes AN7514 and AN7515

Figure 6. Unclamped Inductive Switching

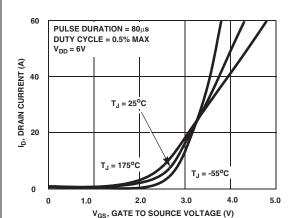


Figure 7. Transfer Characteristics

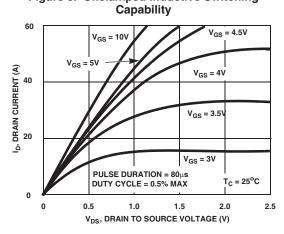


Figure 8. Saturation Characteristics

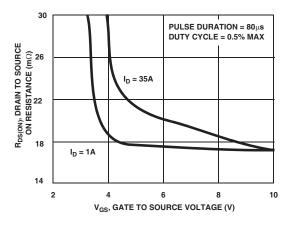


Figure 9. Drain to Source On Resistance vs Gate Voltage and Drain Current

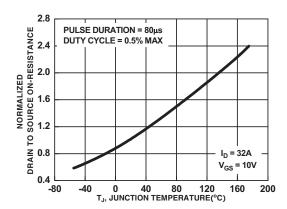


Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

$\textbf{Typical Characteristics} \ \, \textbf{T}_{J} = 25^{\circ} \textbf{C} \, \, \text{unless otherwise noted}$

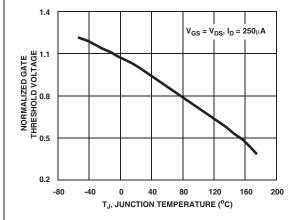


Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature

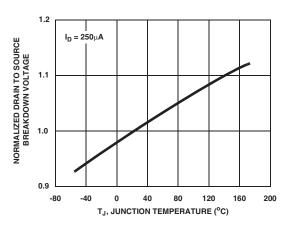


Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

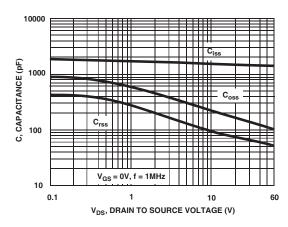


Figure 13. Capacitance vs Drain to Source Voltage

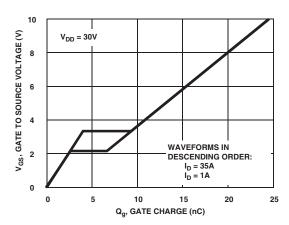


Figure 14. Gate Charge Waveforms for Constant Gate Current

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

Phone: 81-3-5817-1050

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

♦ © Semiconductor Components Industries, LLC

www.onsemi.com