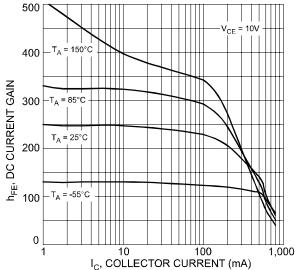
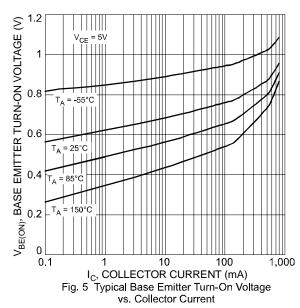


Electrical Characteristics @T_A = 25°C unless otherwise specified

Characteristic	Symbol	Min	Max	Unit	Test Conditions			
OFF CHARACTERISTICS (Note 4)								
Collector-Base Breakdown Voltage	V _{(BR)CBO}	75	_	V	$I_C = 10\mu A, I_E = 0$			
Collector-Emitter Breakdown Voltage	V _{(BR)CEO}	40	_	V	$I_C = 10 \text{mA}, I_B = 0$			
Emitter-Base Breakdown Voltage	V _{(BR)EBO}	6		V	$I_E = 10\mu A, I_C = 0$			
Collector Cut-Off Current	I _{CBO}		10	nA	$V_{CB} = 50V, I_E = 0$			
Collector Cut-On Current			10	μΑ	$V_{CB} = 50V$, $I_E = 0$, $T_A = 150$ °C			
Emitter Cut-Off Current	I _{EBO}	_	10	nA	$V_{EB} = 3V, I_{C} = 0$			
Collector-Emitter Cut-Off Current	I _{CEX}	_	10	nA	$V_{CE} = 60V$, $V_{EB(off)} = 3V$			
ON CHARACTERISTICS (Note 4)								
Collector-Emitter Saturation Voltage	V _{CE(SAT)}		0.3	V	$I_C = 150 \text{mA}, I_B = 15 \text{mA}$			
		_	1.0	V	$I_C = 500 \text{mA}, I_B = 50 \text{mA}$			
Base-Emitter Saturation Voltage		0.6	1.2	V	$I_C = 150 \text{mA}, I_B = 15 \text{mA}$			
Dase-Emilier Saturation voltage	V _{BE(SAT)}		2.0	V	$I_C = 500 \text{mA}, I_B = 50 \text{mA}$			
	hFE	35		V	$I_C = 0.1 \text{mA}, V_{CE} = 10 \text{V}$			
		50	_		$I_C = 1 \text{mA}, V_{CE} = 10 \text{V}$			
		75			$I_C = 10 \text{mA}, V_{CE} = 10 \text{V}$			
DC Current Gain		35	_		$I_C = 10 \text{mA}, V_{CE} = 10 \text{V}, T_A = -55 ^{\circ}\text{C}$			
		100	300		$I_C = 150 \text{mA}, V_{CE} = 10 \text{V}$			
		50	_		$I_C = 150 \text{mA}, V_{CE} = 1 \text{V}$			
		40	_		$I_C = 500 \text{mA}, V_{CE} = 10 \text{V}$			
SMALL SIGNAL CHARACTERISTICS								
Transition Frequency	f⊤	300	_	MHz	$I_C = 20mA$, $V_{CE} = 20V$, $f = 100MHz$			
Output Capacitance	C _{obo}		8	рF	$V_{CB} = 10V$, $I_E = 0$, $f = 1MHz$			
Input Capacitance	C _{ibo}		25	pF	$V_{EB} = 0.5V, I_C = 0, f = 1MHz$			
SWITCHING CHARACTERISTICS								
Delay Time	t _d		10	ns	V _{CE} = 30V, V _{EB(off)} = 0.5V, I _C = 150mA, I _{B1} = 15mA			
Rise Time	t _r	_	25	ns				
Storage Time	ts	_	225	ns	$V_{CE} = 30V$, $I_C = 150mA$, $I_{B1} = I_{B2} = 15mA$			
Fall Time	t _f		60	ns				


Notes: 4. Measured under pulsed conditions. Pulse width = 300 μ S. Duty Cycle, d< = 2%.



DS30481 Rev. 5 - 2

I_C, COLLECTOR CURRENT (mA)
Fig. 3 Typical DC Current Gain vs. Collector Current

30 25 20 CAPACITANCE (pF) 15 10 5 0 <u></u> 0.1 100 V_R, REVERSE VOLTAGE (V)

Fig. 7 Typical Capacitance Characteristics

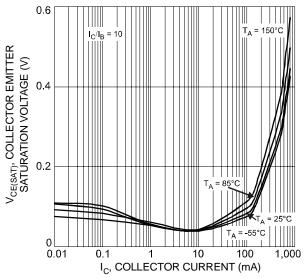


Fig. 4 Typical Collector Emitter Saturation Voltage vs. Collector Current

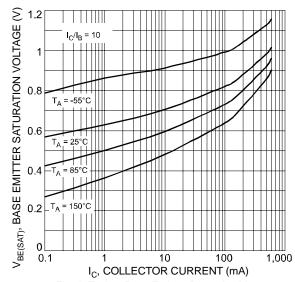
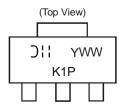


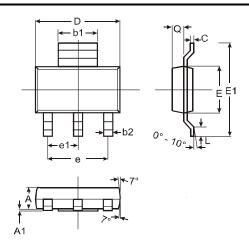

Fig. 6 Typical Base Emitter Saturation Voltage vs. Collector Current

vs. Collector Current

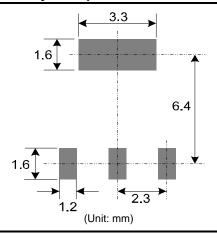


Ordering Information (Note 5)

Device	Packaging	Shipping
DZT2222A-13	SOT-223	2500/Tape & Reel


Notes: 5. For packaging details, go to our website at http://www.diodes.com/datasheets/ap02007.pdf.

Marking Information


K1P = Product Type Marking Code YWW = Date Code Marking Y = Last Digit of Year ex: 7 = 2007 WW = Week Code 01-52

Package Outline Dimensions

SOT-223						
Dim	Min	Max	Тур			
Α	1.55	1.65	1.60			
A1	0.010	0.15	0.05			
b1	2.90	3.10	3.00			
b2	0.60	0.80	0.70			
С	0.20	0.30	0.25			
D	6.45	6.55	6.50			
Е	3.45	3.55	3.50			
E1	6.90	7.10	7.00			
е	_		4.60			
e1	_		2.30			
L	0.55	0.75	0.65			
Q	0.84	0.94	0.89			
All Dimensions in mm						

Suggested Pad Layout: (Based on IPC-SM-782)

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.