Vishay Siliconix

www.vishay.com

TRUTH TABLE (DG408)							
A ₂	A 1	A ₀	EN	ON SWITCH			
Х	Х	Х	0	None			
0	0	0	1	1			
0	0	1	1	2			
0	1	0	1	3			
0	1	1	1	4			
1	0	0	1	5			
1	0	1	1	6			
1	1	0	1	7			
1	1	1	1	8			

TRUTH TABLE (DG409)						
A ₁	A ₀	EN	ON SWITCH			
Х	Х	0	None			
0	0	1	1			
0	1	1	2			
1	0	1	3			
1	1	1	4			

Notes

• Logic "0" = $V_{AL} \leq 0.8 \ V$

• Logic "1" = $V_{AH} \ge 2.4 \text{ V}$

• X = Do not care

ORDERING INFORMATION (Commercial)						
PART	CONFIGURATION	TEMP. RANGE	PACKAGE	ORDERING PART NUMBER		
			16 pip plaatia DID	DG408DJ		
			16-pin plastic DIP	DG408DJ-E3		
				DG408DY		
DG408	8:1 x 1	-40 °C to 85 °C	16 pin 2010	DG408DY-E3		
DG406	0.1 X 1	-40 0 10 65 0	16-pin SOIC	DG408DY-T1		
				DG408DY-T1-E3		
				DG408DQ-E3		
			16-pin TSSOP	DG408DQ-T1-E3		
			16 pip plaatia DID	DG409DJ		
			16-pin plastic DIP	DG409DJ-E3		
				DG409DY		
DC 400	4.1 × 0		16 min 2010	DG409DY-E3		
DG409	4:1 x 2	-40 °C to 85 °C	16-pin SOIC	DG409DY-T1		
				DG409DY-T1-E3		
				DG409DQ-E3		
			16-pin TSSOP	DG409DQ-T1-E3		

Note

• -T1 indicates Tape and Reel, -E3 indicates Lead-Free and RoHS Compliant, NO -E3 indicates standard Tin/Lead finish.

ABSOLUTE MAXIMUM RATINGS						
PARAMETER		LIMIT	UNIT			
Valtages Deferenced to V	V+ to V- ^e	44	V			
Voltages Referenced to V-	GND to V-	-25				
Digital Inputs ^a , V _S , V _D		(V-) - 2 to (V+) + 2 or 20 mA, whichever occurs first				
Current (any terminal)		30				
Peak Current, S or D (pulsed at 1 ms	s, 10 % duty cycle max.)	100	mA			
Storage Temperature (DJ, DY suffix)		-65 to 125	°C			
Devuer Dissis etian (Deslus es) b	16-pin plastic DIP ^c	450				
Power Dissipation (Package) ^b	16-pin narrow SOIC and TSSOP ^d	600	mW			

Notes

a. Signals on S_X, D_X or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

b. All leads soldered or welded to PC board.

c. Derate 6 mW/°C above 75 °C.

d. Derate 7.6 mW/°C above 75 °C.

e. Also applies when V- = GND.

S13-2504-Rev. K, 16-Dec-13

2

Vishay Siliconix

			TEST CONDITIONS UNLESS OTHERWISE SPECIFIED				JFFIX to 85 °C	
			V+ = 15 V, V- = -15 V					
PARAMETER		SYMBOL	$V_{AL}=0.8~V,~V_{AH}=2.4~V^f$	TEMP. ^b	۲YP. ۵	MIN. d	MAX. d	UNIT
Analog	Switch				-			
Analog S	Signal Range ^e	V _{ANALOG}		Full	-	-15	15	V
Drain-So		R _{DS(on)}	$V_{D} = \pm 10 \text{ V}, I_{S} = -10 \text{ mA}$	Room	40	-	100	
On-Resi	stance	US(on)		Full	-	-	125	Ω
R _{DS(on)} N Channel	/atching Between s ^g	$\Delta R_{DS(on)}$	$V_D = \pm 10 V$	Room	-	-	15	
Source	Off Leakage Current		$V_{\rm S} = \pm 10 \rm V,$	Room	-	-0.5	0.5	
oource		I _{S(off)}	$V_{D} = \pm 10 \text{ V}, \text{ V}_{EN} = 0 \text{ V}$	Full	-	-5	5	
DG408				Room	-	-1	1	
DG408	Drain Off Leakage		$V_{D} = \pm 10 V,$ $V_{S} = \pm 10 V,$	Full	-	-20	20	
DG409	Current	I _{D(off)}	$V_{\text{EN}} = 0 \text{ V}$	Room	-	-1	1	nA
DG409				Full	-	-10	10	IIA
DG408				Room	-	-1	1	
DG408	Drain On Leakage		$V_{\rm S} = V_{\rm D} = \pm 10 \rm V$	Full	-	-20	20	-
DG409	Current	I _{D(on)}	sequence each switch on	Room	-	-1	1	
DG409				Full	-	-10	10	
Digital C	Control					•	•	•
Logic High Input Voltage Logic Low Input Voltage		V _{INH}		Full	-	2.4	-	v
		V _{INL}		Full	-	-	0.8	v
Logic Hi	gh Input Current	I _{AH}	V _A = 2.4 V, 15 V	Full	-	-10	10	uA uA
Logic Lo	w Input Current	I _{AL}	V _{EN} = 0 V, 2.4 V, V _A = 0 V	Full	-	-10	10	
Logic In	put Capacitance	C _{in}	f = 1 MHz	Room	8	-	-	pF
Dynami	c Characteristics					•	•	•
Transitio	n Time	t _{TRANS}	see figure 2	Full	160	-	250	
Break-B	efore-Make Interval	t _{OPEN}	see figure 4	Room	-	10	-	
F I				Room	115	-	150	ns
Enable I	urn-On Time	t _{ON(EN)}	see figure 3	Full	-	-	-	
Enable T	urn-Off Time	t _{OFF(EN)}		Room	105	-	150	
Charge I	njection	Q	$C_{L} = 10 \text{ nF}, V_{S} = 0 \text{ V}$	Room	20	-	-	рС
Off Isola	tion ^h	OIRR	$\label{eq:VEN} \begin{array}{l} V_{EN} = 0 \; V, \; R_{L} = 1 \; k\Omega, \\ f = 1 \; MHz \end{array}$	Room	-75	-	-	
Source (Off Capacitance	C _{S(off)}	$V_{EN} = 0 V, V_S = 0 V, f = 1 MHz$	Room	3	-	-	
DG408	Drain Off	<u> </u>		Room	26	-	-	pF
DG409	Capacitance	C _{D(off)}	$V_{EN} = 0 V,$	Room	14	-	-	
DG408	Drain On	0	$V_D = 0 V,$ f = 1 MHz	Room	37	-	-	
DG409	Capacitance	C _{D(on)}		Room	25	-	-	7
Power S	Supplies							
Positive	Supply Current	l+		Full	10	-	75	
Negative	e Supply Current	I-	$V_{EN} = V_A = 0 V \text{ or } 5 V$	Full	1	-75	-	μA
Decitive	Supply Current	1.		Room	0.2	-	0.5	— mA
FUSITIVE	Supply Current	I+	$V_{EN} = V_A = 0 V \text{ or } 5 V$	Full	-	-	2	
Negative Supply Current		I-		Full	-	-500	-	μA

3

For technical questions, contact: <u>analogswitchtechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Siliconix

SPECIFICATIONS ^a (Single Supply)							
		TEST CONDITIONS UNLESS OTHERWISE SPECIFIED			D SUFFIX -40 °C to 85 °C		
		V+ = 12 V, V- = 0 V					
PARAMETER	SYMBOL	$V_{AL} = 0.8 \text{ V}, V_{AH} = 2.4 \text{ V}^{f}$	TEMP. ^b	TYP. °	MIN. ^d	MAX. d	UNIT
Analog Switch							
Drain-Source On-Resistance ^{e,f}	R _{DS(on)}	V _D = 3 V, 10 V, I _S = -1 mA	Room	90	-	-	Ω
Dynamic Characteristics							
Switching Time of Multiplexer ^e	t _{TRANS}	$V_{S1} = 8 \text{ V}, V_{S8} = 0 \text{ V}, V_{IN} = 2.4 \text{ V}$	Room	180	-	-	
Enable Turn-On Time ^e	t _{ON(EN)}	$\label{eq:VINH} \begin{array}{l} V_{INH} = 2.4 \ V, \ V_{INL} = 0 \ V, \\ V_{S1} = 5 \ V \end{array}$	Room	180	-	-	ns
Enable Turn-Off Time ^e	t _{OFF(EN)}		Room	120	-	-	
Charge Injection ^e	Q	$C_L = 1 \text{ nF}, V_S = 0 \text{ V}, R_S = 0$	Room	5	-	-	рС

Notes

a. Refer to PROCESS OPTION FLOWCHART.

b. Room = 25 $^{\circ}$ C, Full = as determined by the operating temperature suffix.

c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.

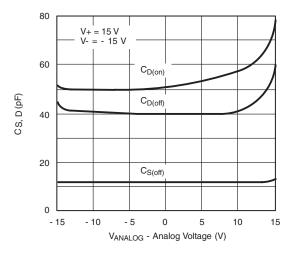
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.

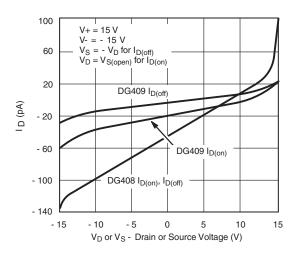
e. Guaranteed by design, not subject to production test.

f. V_{IN} = input voltage to perform proper function.

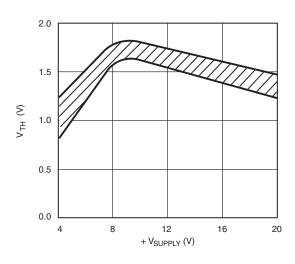
g. $\Delta R_{DS(on)} = R_{DS(on)} \max$. - $R_{DS(on)} \min$.

h. Worst case isolation occurs on channel 4 due to proximity to the drain pin.

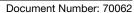

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

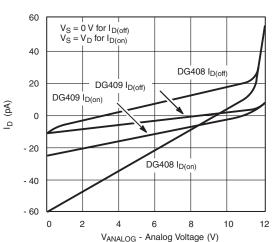

ISHAY

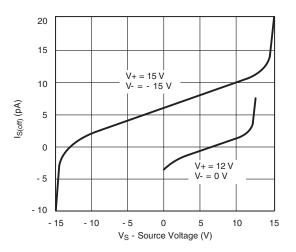
Vishay Siliconix


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

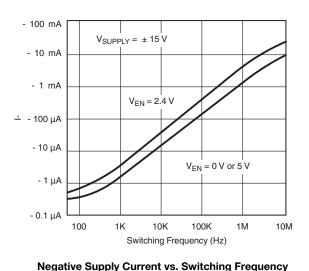
Source/Drain Capacitance vs. Analog Voltage




Drain Leakage Current vs. Source/Drain Voltage


Input Switching Threshold vs. Supply Voltage

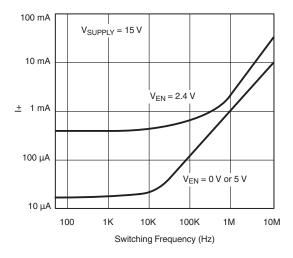
S13-2504-Rev. K, 16-Dec-13



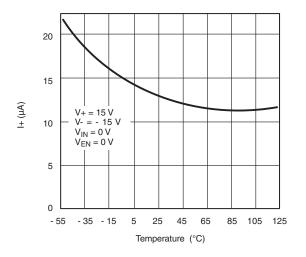
Drain Leakage Current vs. Source/Drain Voltage (Single 12 V Supply)

Source Leakage Current vs. Source Voltage

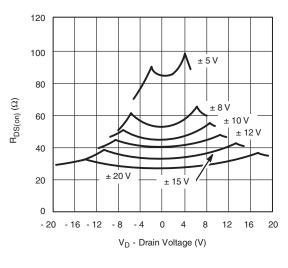
5 For technical questions, contact: analogswitchtechsupport@vishay.com


THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

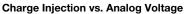

DG408, DG409

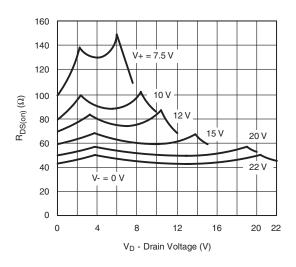
Vishay Siliconix


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Positive Supply Current vs. Switching Frequency

Positive Supply Current vs. Temperature (DG408)


 $R_{\text{DS(on)}}$ vs. V_{D} and Supply

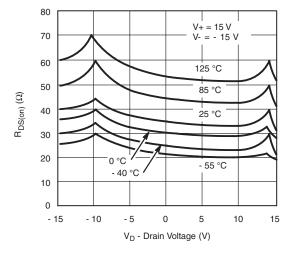

S13-2504-Rev. K, 16-Dec-13

100 µA 10 µA 1+ 1 μΑ 100 nA <u>+</u> 10 nA 1 nA - (I-) $V_{SUPPLY} = \pm 15 V$ $V_A = 0 V$ 100 pA $V_{EN} = 0 V$ 10 pA - 55 35 - 15 5 25 45 65 85 105 125 Temperature (°C)

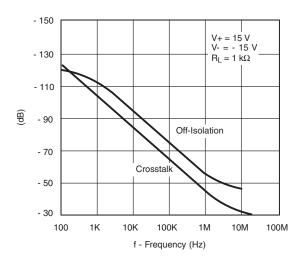
I_{SUPPLY} vs. Temperature

 $R_{\text{DS(on)}}$ vs. V_{D} and Supply (Single Supply)

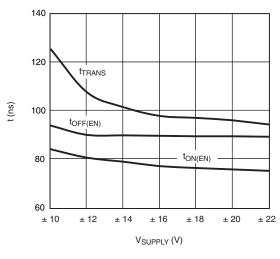
Document Number: 70062


For technical questions, contact: <u>analogswitchtechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

6

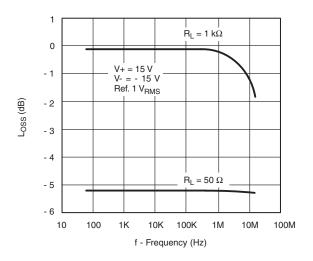


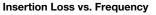
Vishay Siliconix

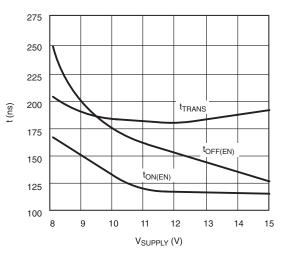

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

R_{DS(on)} vs. V_D and Temperature

Off Isolation and Crosstalk vs. Frequency




Switching Time vs. Bipolar Supply


S13-2504-Rev. K, 16-Dec-13

130 125 °C 110 85 °C 90 25 °C $R_{DS(on)}$ (Ω) 70 0°C 40 °C 50 - 55 °C 30 V+ = 12 V V- = 0 V 10 0 2 6 8 4 10 12 V_D - Drain Voltage (V)

R_{DS(on)} vs. V_D and Temperature (Single Supply)

Switching Time vs. Single Supply

7 For technical questions, contact: analogswitchtechsupport@vishay.com

TEST CIRCUITS

DG408, DG409

Vishay Siliconix

SCHEMATIC DIAGRAM (Typical Channel)

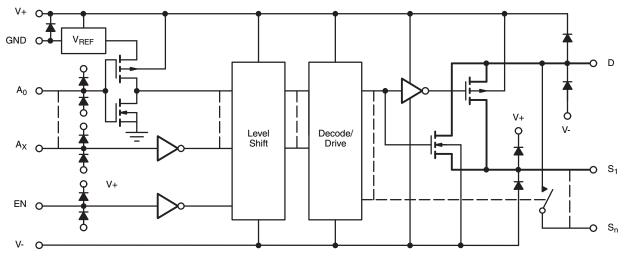
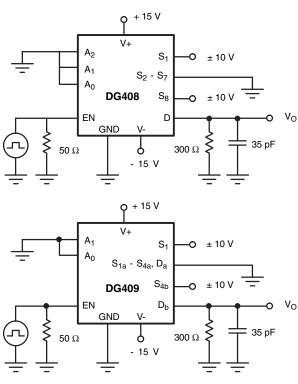
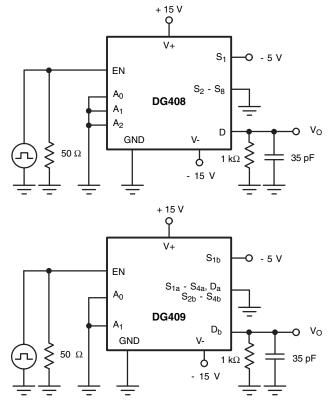



Fig. 1

t_r < 20 ns t_f < 20 ns зv Logic 50 % Input 0 V V_{S1} 90 % Switch Output V_{O} 0 V 90 % V_{S8} t_{TRANS} t_{TRANS} S₈ ON $S_1 ON$


Fig. 2 - Transition Time

For technical questions, contact: <u>analogswitchtechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Siliconix

TEST CIRCUITS

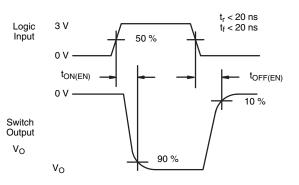


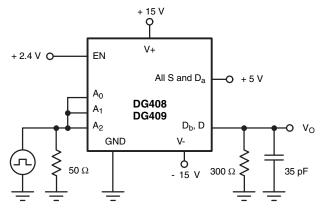
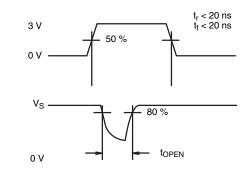
Fig. 3 - Enable Switching Time

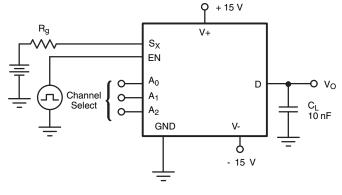
Logic Input

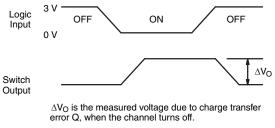
Switch

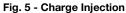
Output

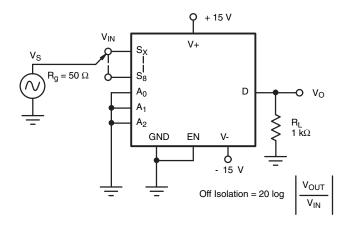
 V_{O}


Fig. 4 - Break-Before-Make Interval




Vishay Siliconix


TEST CIRCUITS

 $Q = C_L x \Delta V_O$

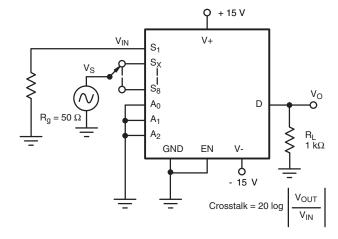


Fig. 6 - Off Isolation

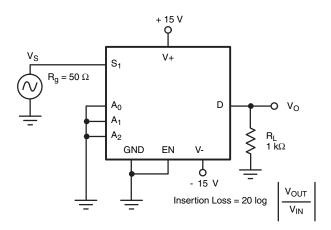


Fig. 8 - Insertion Loss

Fig. 7 - Crosstalk

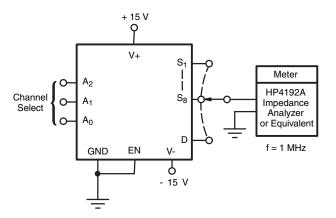


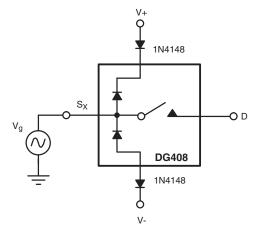
Fig. 9 - Source Drain Capacitance

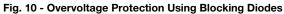
S13-2504-Rev. K, 16-Dec-13

10

Document Number: 70062

For technical questions, contact: <u>analogswitchtechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>





APPLICATION HINTS

Overvoltage Protection

A very convenient form of overvoltage protection consists of adding two small signal diodes (1N4148, 1N914 type) in series with the supply pins (see figure 10). This arrangement effectively blocks the flow of reverse currents. It also floats the supply pin above or below the normal V+ or V- value. In this case the overvoltage signal actually becomes the power supply of the IC. From the point of view of the chip, nothing has changed, as long as the difference VS - (V-) does not exceed + 44 V. The addition of these diodes will reduce the analog signal range to 1 V below V+ and 1 V above V-, but it preserves the low channel resistance and low leakage characteristics.

8-Channel Sequential Multiplexer/Demultiplexer

Differential 4-Channel Sequential Multiplexer/Demultiplexer

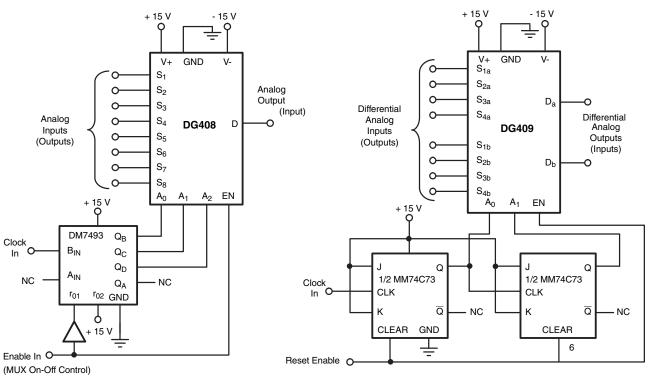
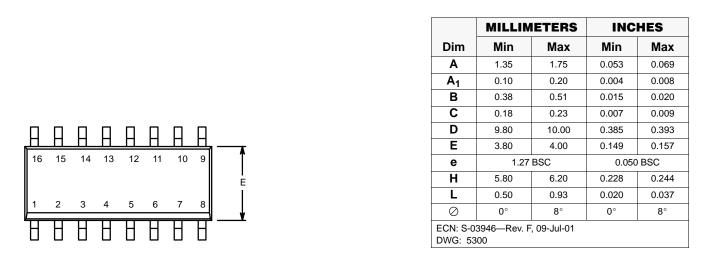
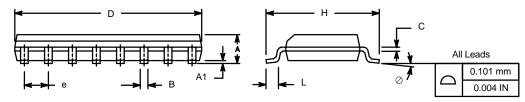


Fig. 11

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see <u>www.vishay.com/ppg?70062</u>.

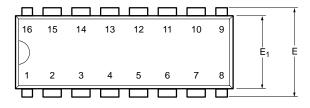
S13-2504-Rev. K, 16-Dec-13

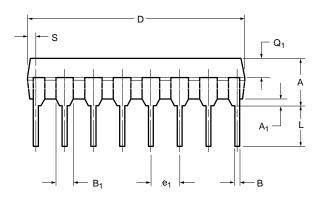

11

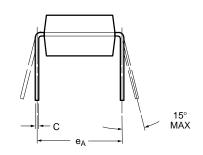


Package Information Vishay Siliconix

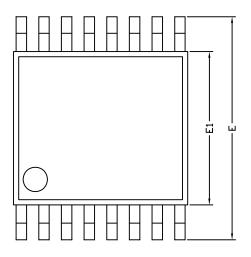
SOIC (NARROW): 16-LEAD

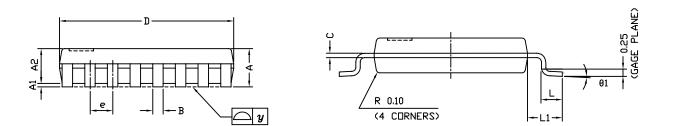

JEDEC Part Number: MS-012





PDIP: 16-LEAD

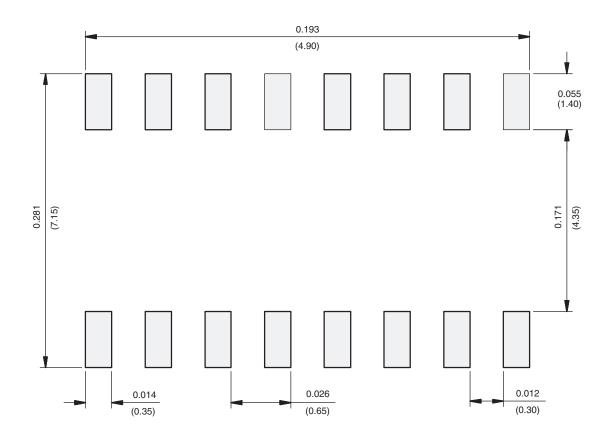

	MILLIN	IETERS	INC	HES			
Dim	Min	Max	Min	Max			
Α	3.81	5.08	0.150	0.200			
A ₁	0.38	1.27	0.015	0.050			
В	0.38	0.51	0.015	0.020			
B ₁	0.89	1.65	0.035	0.065			
С	0.20	0.30	0.008	0.012			
D	18.93	21.33	0.745	0.840			
Е	7.62	8.26	0.300	0.325			
E ₁	5.59	7.11	0.220	0.280			
e ₁	2.29	2.79	0.090	0.110			
e _A	7.37	7.87	0.290	0.310			
L	2.79	3.81	0.110	0.150			
Q 1	1.27	2.03	0.050	0.080			
S	0.38	1.52	.015	0.060			
ECN: S-03946—Rev. D, 09-Jul-01 DWG: 5482							



Package Information

Vishay Siliconix

TSSOP: 16-LEAD

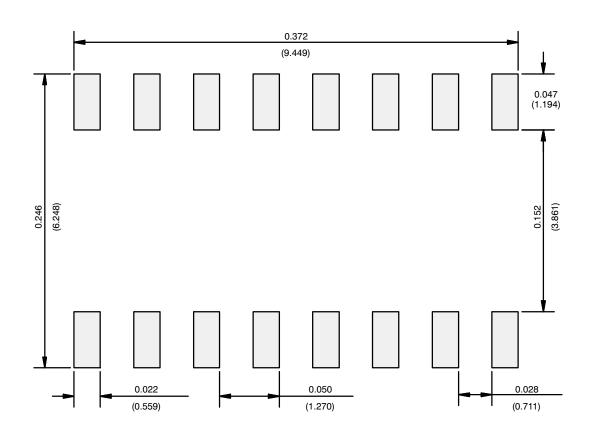

	C	DIMENSIONS IN MILLIMETERS					
Symbols	Min	Nom	Max				
A	-	1.10	1.20				
A1	0.05	0.10	0.15				
A2	-	1.00	1.05				
В	0.22	0.28	0.38				
С	-	0.127	-				
D	4.90	5.00	5.10				
E	6.10	6.40	6.70				
E1	4.30	4.40	4.50				
е	-	0.65	-				
L	0.50	0.60	0.70				
L1	0.90	1.00	1.10				
у	-	-	0.10				
θ1	0°	3°	6°				
ECN: S-61920-Rev. D, 23-Oct-06 DWG: 5624							

PAD Pattern

Vishay Siliconix

RECOMMENDED MINIMUM PAD FOR TSSOP-16

Recommended Minimum Pads Dimensions in inches (mm)


Revision: 02-Sep-11

Application Note 826

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

www.vishay.com 24

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.