

CY7C4225V/4205V/4215V CY7C4425V/4235V/4245V

Pin Configuration

Selection Guide

		CY7C42X5V-15	CY7C42X5V-25	CY7C42X5V-35	Unit
Maximum Frequency		66.7	40	28.6	MHz
Maximum Access Time		11	15	20	ns
Minimum Cycle Time		15	25	35	ns
Minimum Data or Enable Set-up		4	6	7	ns
Minimum Data or Enable He	old	1	1	2	ns
Maximum Flag Delay		11	15	20	ns
Operating Current	Commercial	30	30	30	mA

	CY7C4425V	CY7C4205V	CY7C4215V	CY7C4225V	CY7C4235V	CY7C4245V
Density	64 x 18	256 x 18	512 x 18	1K x 18	2K x 18	4K x 18
Packages	64-pin 14x14 TQFP 64-pin 10x10 STQFP					

Pin Definitions

Signal Name	Description	I/O	Function
D ₀₋₁₇	Data Inputs	Ι	Data inputs for an 18-bit bus.
Q ₀₋₁₇	Data Outputs	0	Data outputs for an 18-bit bus.
WEN	Write Enable	Ι	Enables the WCLK input.
REN	Read Enable	Ι	Enables the RCLK input.
WCLK	Write Clock	I	The rising edge clocks data into the FIFO when WEN is LOW and the FIFO is not Full. When LD is asserted, WCLK writes data into the programmable flag-offset register.
RCLK	Read Clock	I	The rising edge clocks data out of the FIFO when REN is LOW and the FIFO is not Empty. When LD is asserted, RCLK reads data out of the programmable flag-offset register.
WXO/HF	Write Expansion Out/Half Full Flag	0	Dual-Mode Pin . Single device or width expansion - Half Full status flag. Cascaded – Write Expansion Out signal, connected to WXI of next device.
ĒF	Empty Flag	0	When EF is LOW, the FIFO is empty. EF is synchronized to RCLK.
FF	Full Flag	0	When FF is LOW, the FIFO is full. FF is synchronized to WCLK.
PAE	Programmable Almost Empty	0	When PAE is LOW, the FIFO is almost empty based on the almost empty offset value programmed into the FIFO. PAE is asynchronous when V_{CC} /SMODE is tied to V_{CC} ; it is synchronized to RCLK when V_{CC} /SMODE is tied to V_{SS} .
PAF	Programmable Almost Full	0	When PAF is LOW, the FIFO is almost full based on the almost full offset value programmed into the FIFO. PAF is asynchronous when V_{CC} /SMODE is tied to V_{CC} ; it is synchronized to WCLK when V_{CC} /SMODE is tied to V_{SS} .
LD	Load	I	When $\overline{\text{LD}}$ is LOW, D_{0-17} (O_{0-17}) are written (read) into (from) the programmable-flag-offset register.
FL/RT	First Load/ Retransmit	I	Dual-Mode Pin . Cascaded – The <u>fir</u> st device in the daisy chain will have \overline{FL} tied to V_{SS} ; all oth <u>er</u> devices will have FL tied to V_{CC} . In standard mode of width expansion, FL is tied to V_{SS} on all devices. Not Cascaded – Tied to V_{SS} . Retransmit function is also available in standalone mode by strobing RT.
WXI	Write Expansion Input	I	Cascaded – Connected to WXO of previous device. Not Cascaded – Tied to V_{SS} .
RXI	Read Expansion Input	Ι	Cascaded – Connected to $\overline{\text{RXO}}$ of previous device. Not Cascaded – Tied to V _{SS} .

Pin Definitions (continued)

Signal Name	Description	I/O	Function
RXO	Read Expansion Output	0	Cascaded – Connected to RXI of next device.
RS	Reset	Ι	Resets device to empty condition . A reset is required before an initial read or write operation after power-up.
ŌĒ	Output Enable	I	When OE is LOW, the FIFO's data outputs drive the bus to which they are connected. If OE is HIGH, the FIFO's outputs are in High Z (high-impedance) state.
V _{CC} /SMODE	Synchronous Almost Empty/ Almost Full Flags	I	Dual-Mode Pin . Asynchronous Almost Empty/Almost Full flags – tied to V_{CC} . Synchronous Almost Empty/Almost Full flags – tied to V_{SS} . (Almost Empty synchronized to RCLK, Almost Full synchronized to WCLK.)

Architecture

The CY7C42X5V consists of an array of 64 to 4K words of 18 bits each (implemented by a dual-port array of SRAM cells), a <u>read pointer</u>, <u>a write pointer</u>, <u>control signals</u> (RCLK, WCLK, REN, WEN, RS), and flags (EF, PAE, HF, PAF, FF). The CY7C42X5V also includes the control signals WXI, RXI, WXO, RXO for depth expansion.

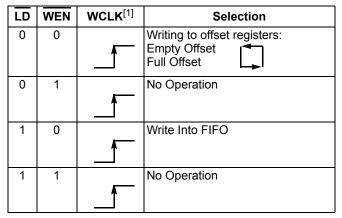
Resetting the FIFO

Upon power-up, the FIFO must be reset with a Reset (\overline{RS}) cycle. This <u>causes</u> the FIFO to enter the Empty condition signified by EF <u>being LOW</u>. All data outputs go LOW after the falling edge of RS only if OE is asserted. In order for the FIFO to reset to its default state, a falling edge <u>must occur on RS</u> and the user must not read or write while RS is LOW.

FIFO Operation

When the WEN signal is active (LOW), data present on the D₀₋₁₇ pins is written into the FIFO <u>on each rising edge</u> of the WCLK signal. Similarly, when the REN signal is active LOW, data in the FIFO memory will be presented on the Q₀₋₁₇ outputs. New data will be presented <u>on each rising edge</u> of RCLK while REN is active LOW and OE is LOW. REN <u>must</u> set up t_{ENS} before RCLK for it to be a valid read function. WEN must occur t_{ENS} before WCLK for it to be a valid write function.

An Output Enable $\overline{(OE)}$ pin is provided to three-state the Q_{0-17} outputs when OE is deasserted. When OE is enabled (LOW), data in the output register will be available to the Q_{0-17} outputs after t_{OE} . If devices are cascaded, the OE function will only output data on the FIFO that is read enabled.


The FIFO contains overflow circuitry to disallow additional writes when the FIFO is full, and underflow circuitry to disallow additional reads when the FIFO is empty. An empty FIFO maintains the data of the last valid read on its Q_{0-17} outputs even after additional reads occur.

Programming

The CY7C42X5V devices contain two 12-bit offset registers. Data present on D₀₋₁₁ during a program write will determine the distance from Empty (Full) that the Almost Empty (Almost Full) flags become active. If the user elects not to program the FIFO's flags, the default offset values are used (see Table 2). When the Load LD pin is set LOW and WEN is set LOW, data on the inputs $\mathsf{D}_{\mathsf{0-11}}$ is written into the Empty offset register on the first LOW-to-HIGH transition of the write clock (WCLK). When the LD pin and WEN are held LOW then data is written into the Full offset register on the second LOW-to-HIGH transition of the Write Clock (WCLK). The third transition of the Write Clock (WCLK) again writes to the Empty offset register (see Table 1). Writing all offset registers does not have to occur at one time. One or two offset registers can be written and then, by bringing the LD pin HIGH, the FIFO is returned to normal read/write operation. When the LD pin is set LOW, and WEN is LOW, the next offset register in sequence is written.

The contents of the offset registers can be read on the output lines when the LD pin is set LOW and REN is set LOW; then, data can be read on the LOW-to-HIGH transition of the Read Clock (RCLK).

Table 1. Write Offset Register

Note:

1. The same selection sequence applies to reading from the registers. REN is enabled and read is performed on the LOW-to-HIGH transition of RCLK.

Flag Operation

The CY7C42X5V devices provide five flag pins to indicate the condition of the FIFO contents. Empty and Full are synchronous. PAE and PAF are synchronous if V_{CC}/SMODE is tied to V_{SS}.

Full Flag

The Full Flag (\overline{FF}) will go LOW when device is Full. Write operations are inhibited whenever \overline{FF} is LOW regardless of the state of WEN. \overline{FF} is synchronized to WCLK, i.e., it is exclusively updated by each rising edge of WCLK.

Empty Flag

Table 2. Flag Truth Table

The Empty Flag (\overline{EF}) will go LOW when the device is empty. Read operations are inhibited whenever \overline{EF} is LOW, regardless of the state of REN. \overline{EF} is synchronized to RCLK, i.e., it is exclusively updated by each rising edge of RCLK.

Programmable Almost Empty/Almost Full Flag

The CY7C42X5V features programmable Almost Empty and Almost Full Flags. Each flag can be programmed (described in the Programming section) a specific distance from the corresponding boundary flags (Empty or Full). When the FIFO contains the number of words or fewer for which the flags have been programmed, the PAF or PAE will be asserted, signifying that the FIFO is either Almost Full or Almost Empty. See *Table 2* for a description of programmable flags.

When the $\overline{\text{SMODE}}$ pin is tied LOW, the $\overline{\text{PAF}}$ flag signal transition is caused by the rising edge of the write clock and the PAE flag transition is caused by the rising edge of the read clock.

Retransmit

The retransmit feature is beneficial when transferring packets of data. It enables the receipt of data to be acknowledged by the receiver and retransmitted if necessary.

The Retransmit (RT) input is active in the standalone and width expansion modes. The retransmit feature is intended for use when a number of writes equal to or less than the depth of the FIFO have occurred since the last RS cycle. A HIGH pulse on RT resets the internal read pointer to the first physical location of the FIFO. WCLK and RCLK may be free running but must be disabled during and tRTR after the retransmit pulse. With every valid read cycle after retransmit, previously accessed data is read and the read pointer is incremented until it is equal to the write pointer. Flags are governed by the relative locations of the read and write pointers and are updated during a retransmit cycle. Data written to the FIFO after activation of RT are transmitted also.

The full depth of the FIFO can be repeatedly retransmitted.

7C4205V - 256 x 18	7C4215V - 512 x 18	FF	PAF	HF	PAE	EF
0	0	Н	Н	Н	L	L
1 to n ^[2]	1 to n ^[2]	Н	Н	Н	L	Н
(n + 1) to 128	(n + 1) to 256	Н	Н	Н	Н	Н
129 to (256 – (m + 1))	257 to (512 – (m + 1))	Н	Н	L	Н	Н
(256 – m) ^[3] to 255	(512 – m) ^[3] to 511	Н	L	L	Н	Н
256	512	L	L	L	Н	Н
	0 1 to n ^[2] (n + 1) to 128 129 to (256 – (m + 1)) (256 – m) ^[3] to 255	$\begin{array}{cccc} 0 & 0 \\ 1 \ \text{to} \ n^{[2]} & 1 \ \text{to} \ n^{[2]} \\ (n+1) \ \text{to} \ 128 & (n+1) \ \text{to} \ 256 \\ 129 \ \text{to} \ (256 - (m+1)) & 257 \ \text{to} \ (512 - (m+1)) \\ (256 - m)^{[3]} \ \text{to} \ 255 & (512 - m)^{[3]} \ \text{to} \ 511 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Number of Words in FIFO							
7C4225V - 1K x 18	7C4235V - 2K x 18	7C4245V - 4K x 18	FF	PAF	HF	PAE	EF
0	0	0	Н	Н	Н	L	L
1 to n ^[2]	1 to n ^[2]	1 to n ^[2]	Н	Н	Н	L	Н
(n + 1) to 512	(n + 1) to 1024	(n + 1) to 2048	Н	Н	Н	Н	Н
513 to (1024 – (m + 1))	1025 to (2048 – (m + 1))	2049 to (4096 – (m + 1))	Н	Н	L	Н	Н
(1024 – m) ^[3] to 1023	(2048 – m) ^[3] to 2047	(4096 – m) ^[3] to 4095	Н	L	L	Н	Н
1024	2048	4096	L	L	L	Н	Н

Note:

2. n = Empty Offset (Default Values: CY7C4425V n = 7, CY7C4205V n = 31, CY7C4215V n = 63, CY7C4225V/7C4235V/7C4245V n = 127).

3. m = Full Offset (Default Values: CY7C4425V n = 7, CY7C4205V n = 31, CY7C4215V n = 63, CY7C4225V/7C4235V/7C4245V n = 127).

Width Expansion Configuration

The CY7C42X5V can be expanded in width to provide word widths greater than 18 in increments of 18. During width expansion mode all control line inputs are common and all flags are available. Empty (Full) flags should be created by

ANDing the Empty (Full) flags of every FIFO. This technique will avoid ready data from the FIFO that is "staggered" by one clock cycle due to the variations in skew between RCLK and WCLK. *Figure 2* demonstrates a 36-word width by using two CY7C42X5V.

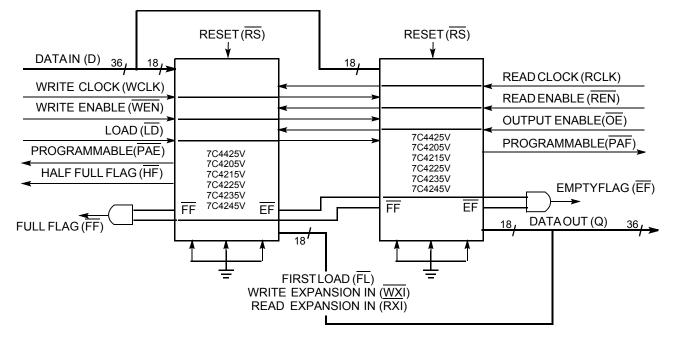


Figure 1. Block Diagram of Low-Voltage Synchronous FIFO Memories Used in a Width Expansion Configuration

Depth Expansion Configuration (with Programmable Flags)

The CY7C42X5V can easily be adapted to applications requiring more than 64/256/512/1024/2048/4096 words of buffering. *Figure 2* shows Depth Expansion using three CY7C42X5Vs. Maximum depth is limited only by signal loading. Follow these steps:

- 1. The first device must be designated by grounding the First Load (FL) control input.
- 2. All other devices must have \overline{FL} in the HIGH state.
- 3. The Write Expansion Out (WXO) pin of each device must be tied to the Write Expansion In (WXI) pin of the next device.
- The Read Expansion Out (RXO) pin of each device must be tied to the Read Expansion In (RXI) pin of the next device.
- 5. All Load (\overline{LD}) pins are tied together.
- 6. The Half-Full Flag (HF) is not available in the Depth Expansion Configuration.
- 7. EF, FF, PAE, and PAF are created with composite flags by ORing together these respective flags for monitoring. The composite PAE and PAF flags are not precise.

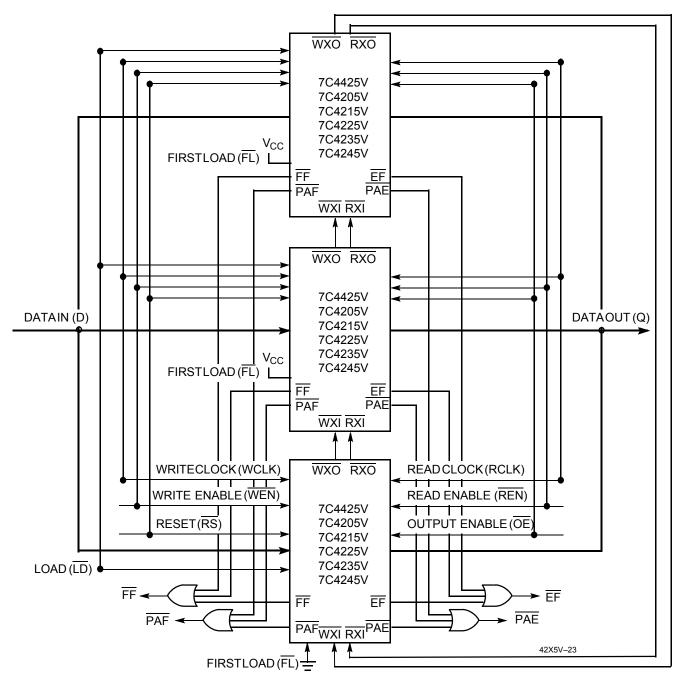


Figure 2. Block Diagram of Low-Voltage Synchronous FIFO Memory with Programmable Flags used in Depth Expansion Configuration

CY7C4225V/4205V/4215V CY7C4425V/4235V/4245V

Maximum Ratings^[4]

(Above which the useful life may be impaired. For user guide- lines, not tested.)
Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied55°C to +125°C
Supply Voltage to Ground Potential0.5V to +5.0V
DC Voltage Applied to Outputs in High-Z State –0.5V to $V_{CC}\mbox{+}0.5V$

Electrical Characteristics Over the Operating Range

DC Input Voltage –0.5V to +5V Static Discharge Voltage>2001V (per MIL-STD-883, Method 3015) Latch-up Current.....>200 mA

Operating Range

Range	Ambient Temperature	V _{cc}
Commercial	0°C to +70°C	3.3V ± 300 mV

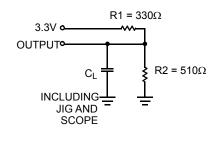
7C42X5V-15 7C42X5V-25 7C42X5V-35 **Test Conditions** Min. Parameter Unit Description Max. Min. Max. Min. Max. $V_{CC} = Min.,$ 2.4 2.4 2.4 V V_{OH} Output HIGH Voltage $I_{OH} = -2.0 \text{ mA}$ Output LOW Voltage V_{CC} = Min., 0.4 0.4 0.4 V Vol I_{OL} = 8.0 mA V_{IH} Input HIGH Voltage Low = 2.0V2.0 5.0 2.0 5.0 2.0 5.0 V High = V_{CC} +0.5V V_{II} ^[5] Low = -3.0VV Input LOW Voltage -0.5 0.8 -0.5 0.8 -0.50.8 High = 0.8 VV_{CC} = Max. -10 10 -10 10 10 Input Leakage Current -10 uΑ I_{IX} $\overline{OE} \ge V_{IH}$, Output OFF, -10 +10 -10 +10 -10 +10 μA I_{OZL} $V_{SS} < V_O < V_{CC}$ High Z Current I_{OZH} I_{CC}^[6] V_{CC} = Max., 30 30 30 **Operating Current** Com'l mΑ $I_{OUT} = 0 \text{ mA}$ I_{SB}[7] $V_{CC} = Max.,$ Standby Current Com'l 6 6 6 mΑ $I_{OUT} = 0 \text{ mA}$

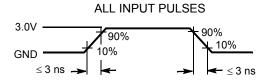
Capacitance^[8]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 MHz,$	5	pF
C _{OUT}	Output Capacitance	V _{CC} = 5.0V	7	pF

Notes:

 The Voltage on any input or I/O pin cannot exceed the power pin during power-up
 The V_{IH} and V_{IL} specifications apply for all inputs except WXI, RXI. The WXI, RXI pin is not a TTL input. It is connected to either RXO, WXO of the previous device or V_{SS}.


6. Input signals switch from 0V to 3V with a rise/fall time less than 3 ns, clocks and clock enables switch at 20 MHz, while the data inputs switch at 10 MHz. Outputs are unloaded.


7. All inputs = V_{CC} – 0.2V, except WCLK and RCLK, which are switching at 20 MHz.

8. Tested initially and after any design or process changes that may affect these parameters

AC Test Loads and Waveforms^[9, 10]

Equivalent to:	THÉVENIN E	EQUIVALENT	
		Rth = 2000	2
	OUTPUT		o Vth = 2.0V

Switching Characteristics Over the Operating Range

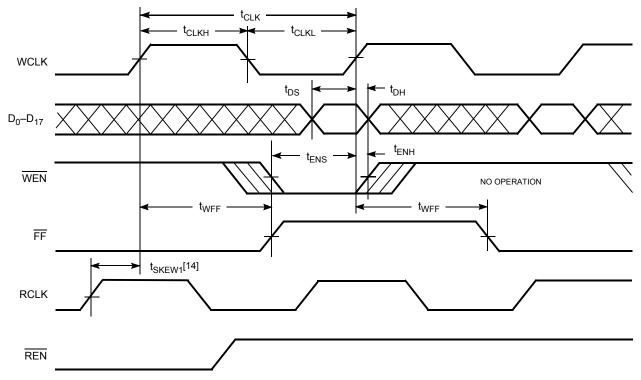
		7C42	X5V-15	7C42X5V-25		7C42X5V-35			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
t _S	Clock Cycle Frequency		66.7		40		28.6	MHz	
t _A	Data Access Time	2	11	2	15	2	20	ns	
t _{CLK}	Clock Cycle Time	15		25		35		ns	
t _{CLKH}	Clock HIGH Time	6		10		14		ns	
t _{CLKL}	Clock LOW Time.	6		10		14		ns	
t _{DS}	Data Set-up Time	4		6		7		ns	
t _{DH}	Data Hold Time	1		2		2		ns	
t _{ENS}	Enable Set-up Time	4		6		7		ns	
t _{ENH}	Enable Hold Time	1		2		2		ns	
t _{RS}	Reset Pulse Width ^[11]	15		25		35		ns	
t _{RSR}	Reset Recovery Time	10		15		20		ns	
t _{RSF}	Reset to Flag and Output Time		18		25		35	ns	
t _{PRT}	Retransmit Pulse Width	15		25		35		ns	
t _{RTR}	Retransmit Recovery Time	15		25		35		ns	
t _{OLZ}	Output Enable to Output in Low Z ^[12]	0		0		0		ns	
t _{OE}	Output Enable to Output Valid	3	8	3	12	3	15	ns	
t _{OHZ}	Output Enable to Output in High Z ^[12]	3	8	3	12	3	15	ns	
t _{WFF}	Write Clock to Full Flag		11		15		20	ns	
t _{REF}	Read Clock to Empty Flag		11		15		20	ns	
t _{PAFasynch}	Clock to Programmable Alm <u>ost-Full</u> Flag ^[13] (Asynchronous mode, V _{CC} /SMODE tied to V _{CC})		18		22		25	ns	
t _{PAFsynch}	Clock to Programmable Al <u>most-Full</u> Flag (Synchronous mode, V _{CC} /SMODE tied to V _{SS})		11		15		20	ns	
t _{PAEasynch}	Clock to Programmable Almost-Empty Flag ^[13] (Asynchronous mode, V_{CC} /SMODE tied to V_{CC})		18		22		25	ns	
t _{PAEsynch}	Clock to Programmable Al <u>most-Full</u> Flag (Synchronous mode, V _{CC} /SMODE tied to V _{SS})		11		15		20	ns	
t _{HF}	Clock to Half-Full Flag		16		20		25	ns	

Notes:

9. C_L = 30 pF for all AC parameters except for t_{OHZ} . 10. C_L = 5 pF for t_{OHZ} . 11. Pulse widths less than minimum values are not allowed.

12. Values guaranteed by design, not currently tested.

13. t_{PAFasynch}, t_{PAEasynch}, after program register write will not be valid until 5 ns + $t_{PAF(E)}$.

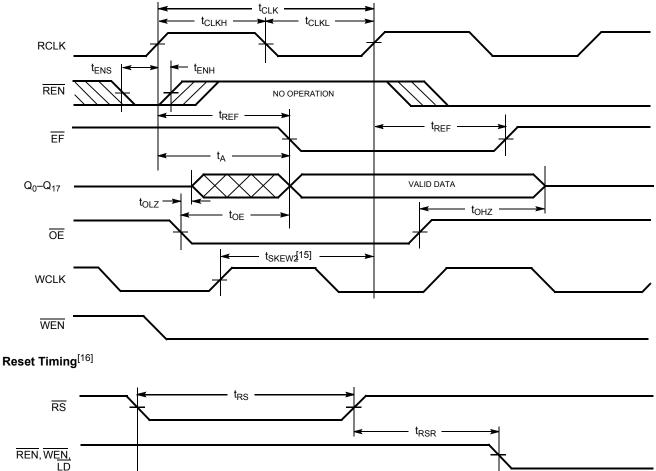


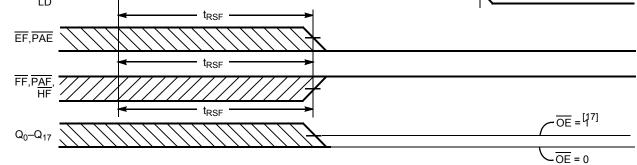
Switching Characteristics Over the Operating Range (continued)

		7C42X5V-15		7C42X5V-25		7C42X5V-35			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
t _{XO}	Clock to Expansion Out		10		15		20	ns	
t _{XI}	Expansion in Pulse Width	6.5		10		14		ns	
t _{XIS}	Expansion in Set-up Time	5		10		15		ns	
t _{SKEW1}	Skew Time between Read Clock and Write Clock for Full Flag	6		10		12		ns	
t _{SKEW2}	Skew Time between Read Clock and Write Clock for Empty Flag	6		10		12		ns	
t _{SKEW3}	Skew Time between Read Clock and Write Clock for Programmable Almost Empty and Programmable Almost Full Flags.	15		18		20		ns	

Switching Waveforms

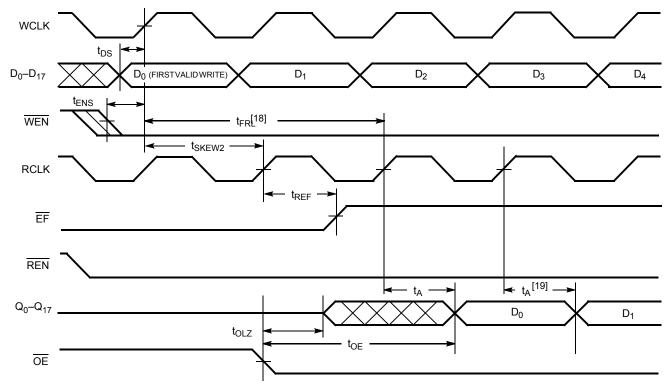
Write Cycle Timing



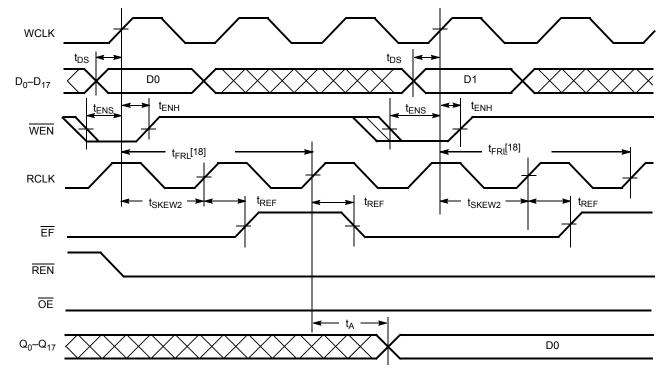

Note:

14. t_{SKEW1} is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that FF will go HIGH during the current clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than t_{SKEW1}, then FF may not change state until the next WCLK edge.

Read Cycle Timing

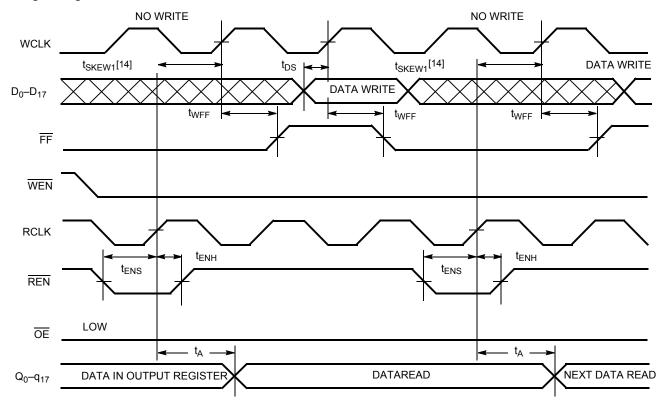


Notes:

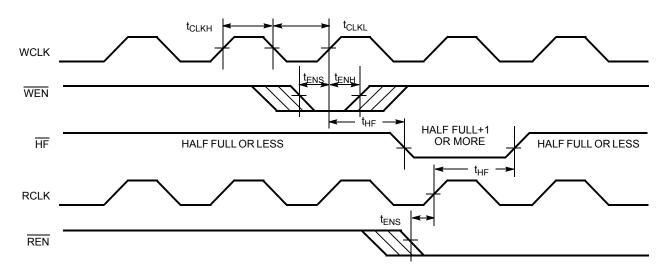

- 15. t_{SKEW2} is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that EF will go HIGH during the current clock cycle. It the time between the rising edge of WCLK and the rising edge of RCLK is less than t_{SKEW2}, then EF may not change state until the next RCLK edge.
 16. The clocks (RCLK, WCLK) can be free-running during reset.
 17. After reset, the outputs will be LOW if OE = 0 and three-state if OE = 1.

First Data Word Latency after Reset with Simultaneous Read and Write

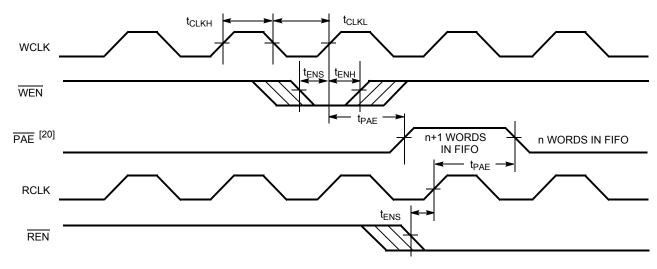
Empty Flag Timing



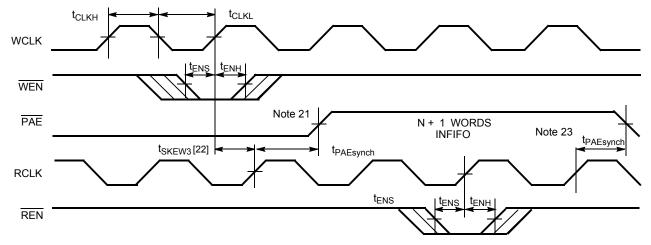
Notes:


18. When t_{SKEW2} ≥ minimum specification, t_{FRL} (maximum) = t_{CLK} + t_{SKEW2}. When t_{SKEW2} < minimum specification, t_{FRL} (maximum) = either 2*t_{CLK} + t_{SKEW2} or t_{CLK} + t_{SKEW2}. The Latency Timing applies only at the Empty Boundary (EF = LOW).
 19. The first word is available the cycle after EF goes HIGH, always.

Full Flag Timing



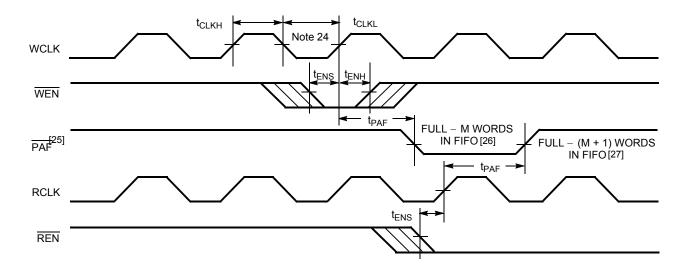
Half-Full Flag Timing-



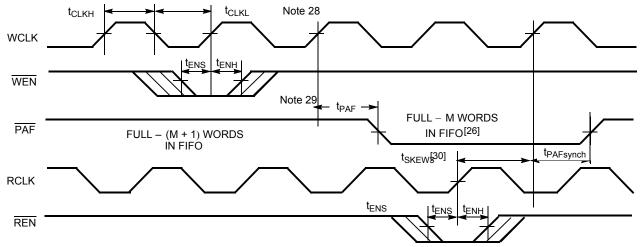
Programmable Almost Empty Flag Timing

Programmable Almost Empty Flag Timing (applies only in SMODE (SMODE is LOW)

Notes:


20. PAE offset - n. Number of data words into FIFO already = n.

21. PAE offset - n.


22. t_{SKEW3} is the minimum time between a rising WCLK and a rising RCLK edge for \overline{PAE} to change state during that clock cycle. If the time between the edge of WCLK and the rising RCLK is less than t_{SKEW3} , then PAE may not change state until the next RCLK. 23. If a read is performed on this rising edge of the read clock, there will be Empty + (n-1) words in the FIFO when \overline{PAE} goes LOW.

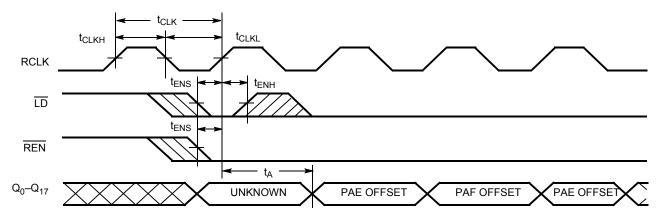
Programmable Almost Full Flag Timing

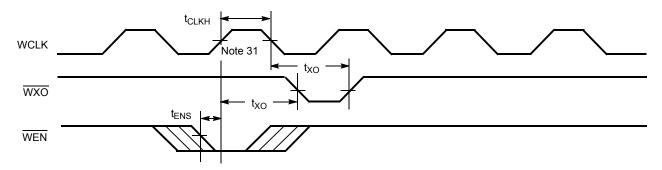
Programmable Almost Full Flag Timing (applies only in SMODE (SMODE in LOW))

Notes:

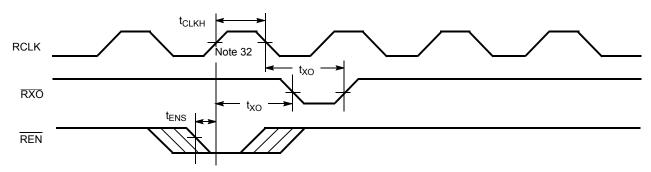
- 24. PAF offset = m. Number of data words written into FIFO already = 64 m + 1 for the CY7C4425V, 256 m + 1 for the CY7C4205V, 512 m + 1 for the CY7C4215V. 1024 m + 1 for the CY7C4225V, 2048 m + 1 for the CY7C4235V, and 4096 m + 1 for the CY7C4245V.
- 25. PAF is offset = m.
- 26.64 m words in CY7C4425V, 256 m words in CY7C4205V, 512 m words in CY7C4215V. 1024 m words in CY7C4225V, 2048 m words in CY7C4235V, and 4096 m words in CY7C4245V.
- 27.64 m + 1 words in CY7C425V, 256 m + 1 words in CY7C4205V, 512 m + 1 words in CY7C4215V, 1024 m + 1 CY7C4225V, 2048 m + 1 in CY74235V, and 4096 m + 1 words in CY7C4245V.
- 28. If a write is performed on this rising edge of the write clock, there will be Full (m-1) words of the FIFO when \overline{PAF} goes LOW.

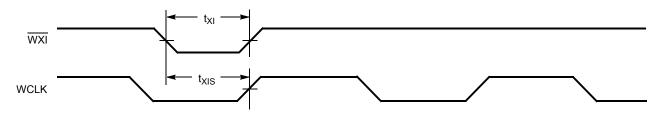
29. PAF offset = m.

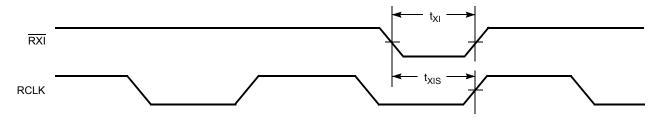

30. t_{SKEW3} is the minimum time between a rising RCLK and a rising WCLK edge for \overline{PAF} to change state during that clock cycle. If the time between the edge of RCLK and the rising edge of WCLK is less than t_{SKEW3} , then PAF may not change state until the next WCLK rising edge.

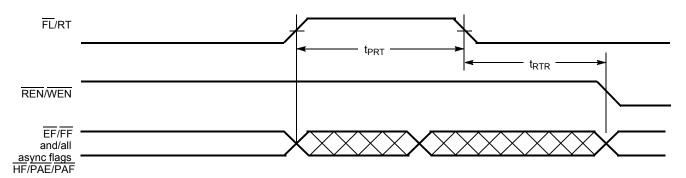

Write Programmable Registers

Read Programmable Registers


Write Expansion Out Timing


Note: 31. Write to Last Physical Location.


Read Expansion Out Timing


Write Expansion In Timing

Read Expansion In Timing

Retransmit Timing^[33, 34, 35]

Notes:

- 32. Read from Last Physical Location. 33. Clocks are free running in this case. 34. The flags may chang<u>e state during</u> Retransmit as a result of the offset of the read and write pointers, but flags will be valid at t_{RTR}. 35. For the synchronous PAE and PAF flags (SMODE), an appropriate clock cycle is necessary after t_{RTR} to update these flags.

Ordering Information

64 x 18 Low-Voltage Synchronous FIFO

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C4425V-15ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial
25	CY7C4425V-25ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial
35	CY7C4425V-35ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial

256 x 18 Low-Voltage Synchronous FIFO

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C4205V-15ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial
	CY7C4205V-15AC	A65	64-Lead 14x14 Thin Quad Flatpack	
	CY7C4205V-15ASXC	A64	64-Lead Pb-Free 10x10 Thin Quad Flatpack	
25	CY7C4205V-25ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial
35	CY7C4205V-35ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial

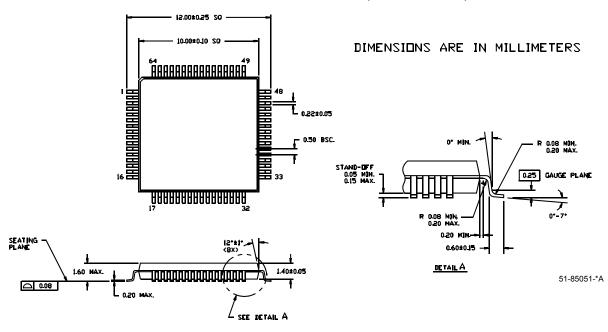
512 x 18 Low-Voltage Synchronous FIFO

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C4215V-15ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial
	CY7C4215V-15ASXC	A64	64-Lead Pb-Free 10x10 Thin Quad Flatpack	
25	CY7C4215V-25ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial
35	CY7C4215V-35ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial

1K x 18 Low-Voltage Synchronous FIFO

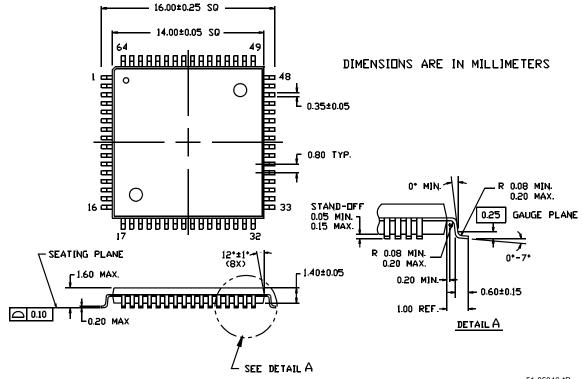
Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C4225V-15ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial
	CY7C4225V-15ASXC	A64	64-Lead Pb-Free 10x10 Thin Quad Flatpack	
	CY7C4225V-15AC	A65	64-Lead 14x14 Thin Quad Flatpack	
25	CY7C4225V-25ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial
35	CY7C4225V-35ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial

2K x 18 Low-Voltage Synchronous FIFO


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C4235V-15ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial
	CY7C4235V-15ASXC	A64	64-Lead Pb-Free 10x10 Thin Quad Flatpack	
25	CY7C4235V-25ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial
35	CY7C4235V-35ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial

4K x 18 Low-Voltage Synchronous FIFO

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C4245V-15ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial
	CY7C4245V-15ASXC	A64	64-Lead Pb-Free 10x10 Thin Quad Flatpack	
25	CY7C4245V-25ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial
	CY7C4245V-25ASXC	A64	64-Lead Pb-Free 10x10 Thin Quad Flatpack	
35	CY7C4245V-35ASC	A64	64-Lead 10x10 Thin Quad Flatpack	Commercial



Package Diagrams

64-Pin Thin Plastic Quad Flat Pack (10 x 10 x 1.4 mm) A64 64-Pin Pb-Free Thin Plastic Quad Flat Pack (10 x 10 x 1.4 mm) A64

51-85046-*B

All product and company names mentioned in this document are the trademarks of their respective holders.

Document #: 38-06029 Rev. *C

© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Downloaded from Arrow.com.

Document History Page

Document Title: CY7C4425V/4205V/4215V CY7C4225V/4235V/4245V 64/256/512/1K/2K/4K x 18 Low-Voltage Synchronous FIFOs Document Number: 38-06029

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	109961	12/17/01	SZV	Change from Spec number: 38-00609 to 38-06029
*A	122281	12/26/02	RBI	Power up requirements added to Maximum Ratings Information
*B	127856	08/22/03	FSG	Fixed read cycle timing diagram Corrected <u>switc</u> hing wavefo <u>rm d</u> iagram typos Page 12: WEN changed to R <u>EN (ty</u> po) Page 13: WCLK changed to RCLK (typo)
*C	393636	See ECN	YIM	Added Pb-Free Logo Added Pb-Free parts to ordering information: CY7C4205V-15ASXC, CY7C4215V-15ASXC, CY7C4225V-15ASXC, CY7C4235V-15ASXC, CY7C4245V-15ASXC, CY7C4245V-25ASXC