

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Ambient Temperature with Power Applied	–55°C to +125°C
Supply Voltage to Ground Potential (Pin 24 to Pin 12)	–0.5V to +7.0V
DC Voltage Applied to Outputs in High Z State ^[1]	–0.5V to V _{CC} + 0.5V

DC Input Voltage ^[1]	–0.5V to V _{CC} + 0.5V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

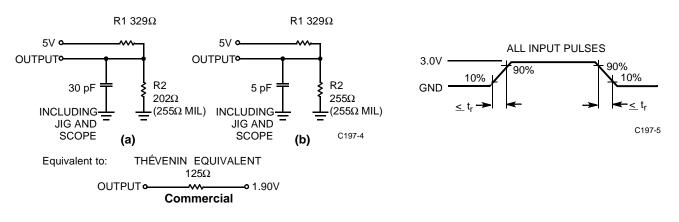
Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	$5V \pm 10\%$

Electrical Characteristics Over the Operating Range

			7C1	97-12	7C1	97-15	
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V_{CC} = Min., I_{OH} = -4.0 mA	2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min.$ I _{OL} =12.0 mA		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3V	2.2	V _{CC} +0.3V	V
V _{IL}	Input LOW Voltage ^[1]		-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$	-5	+5	-5	+5	μΑ
I _{OZ}	Output Leakage Current	GND \leq V _O \leq V _{CC} , Output Disabled	-5	+5	-5	+5	μΑ
I _{OS}	Output Short Circuit Current ^[2]	V _{CC} = Max., V _{OUT} = GND		-300		-300	mA
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max., I_{OUT} = 0 mA,$ f = f _{MAX} = 1/t _{RC}		150		140	mA
I _{SB1}	Automatic CE Power-Down Current—TTL Inputs ^[3]	$\begin{array}{l} \text{Max. } V_{CC}, \overline{CE} \geq V_{IH}, V_{IN} \geq V_{IH} \text{ or} \\ V_{IN} \leq V_{IL}, f = f_{MAX} \end{array}$		30		30	mA
I _{SB2}	Automatic CE Power-Down Current—CMOS Inputs ^[3]	Max. V_{CC} , $\overline{CE} \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} < 0.3V$		10		10	mA

Notes:

V_(min.) = -2.0V for pulse durations of less than 20 ns.
Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
A pull-up resistor to V_{CC} on the CE input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.


			7C1	97-20	7C197-2	25, 35, 45	
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V_{CC} = Min., I_{OH} = -4.0 mA	2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min.$ $I_{OL} = 12.0 mA$		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3V	2.2	V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage ^[1]		-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$	-5	+5	-5	+5	μΑ
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}$, Output Disabled	-5	+5	-5	+5	μΑ
I _{OS}	Output Short Circuit Current ^[2]	V _{CC} = Max., V _{OUT} = GND		-300		-300	mA
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max., I_{OUT} = 0 mA,$ f = f _{MAX} = 1/t _{RC}		135		95	mA
I _{SB1}	Automatic CE Power Down Current—TTL Inputs ^[3]	$\begin{array}{l} \text{Max. } V_{CC}, \ \overline{CE} \geq V_{IH}, \ V_{IN} \geq V_{IH} \ \text{or} \\ V_{IN} \leq V_{IL}, \ \text{f} = f_{MAX} \end{array}$		30		30	mA
I _{SB2}	Automatic CE Power-Down Current—CMOS Inputs ^[3]	$\begin{array}{l} \text{Max. V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0.3\text{V}, \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3\text{V} \text{ or } \text{V}_{\text{IN}} < 0.3\text{V} \end{array}$		15		15	mA

Electrical Characteristics Over the Operating Range (continued)

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	10	pF

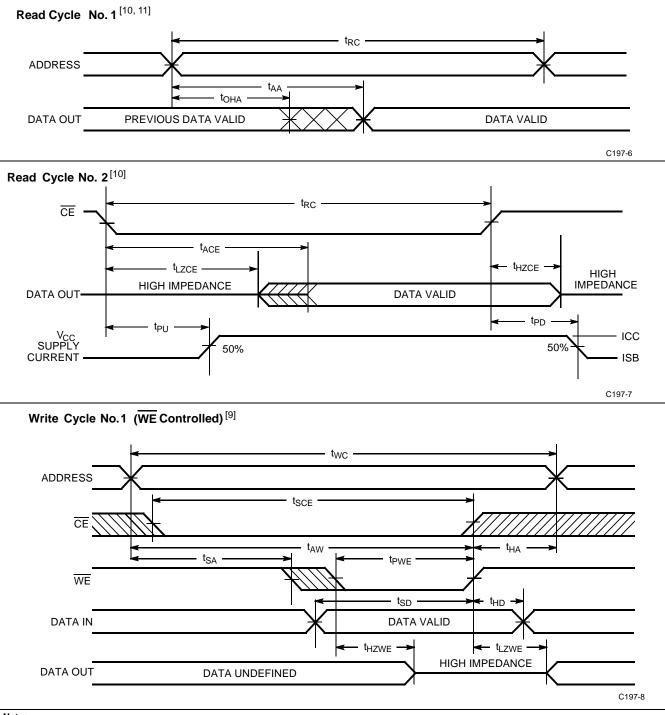
AC Test Loads and Waveforms^[5]

Notes:

Tested initially and after any design or process changes that may affect these parameters. $t_r = \leq 3$ ns for the -12 and -15 speeds. $t_r = \leq 5$ ns for the -20 and slower speeds. 4. 5.

Switching Characteristics Over the Operating Range^[6]

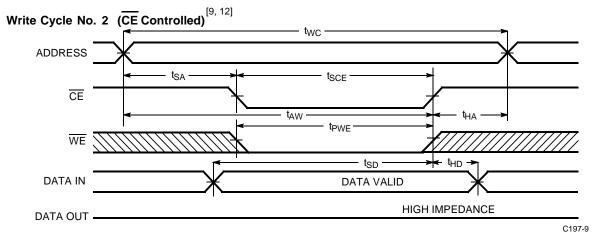
		7C1	97-12	7C197-15		7C197-20		7C197-25		7C197-35		7C197-45		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYC	CLE													
t _{RC}	Read Cycle Time	12		15		20		25		35		45		ns
t _{AA}	Address to Data Valid		12		15		20		25		35		45	ns
t _{OHA}	Output Hold from Address Change	3		3		3		3		3		3		ns
t _{ACE}	CE LOW to Data Valid		12		15		20		25		35		45	ns
t _{LZCE}	CE LOW to Low Z ^[7]	3		3		3		3		3		3		ns
t _{HZCE}	CE HIGH to High Z ^[7, 8]		5		7	0	9	0	11	0	15	0	15	ns
t _{PU} CE LOW to Power-Up		0		0		0		0		0		0		ns
t _{PD}	CE HIGH to Power-Down		12		15		20		20		25		30	ns
WRITE CY	CLE ^[9]		1		1	•	•	L						
t _{WC}	Write Cycle Time	12		15		20		25		35		45		ns
t _{SCE}	CE LOW to Write End	9		10		15		20		30		40		ns
t _{AW}	Address Set-Up to Write End	9		10		15		20		30		40		ns
t _{HA}	Address Hold from Write End	0		0		0		0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		0		0		0		ns
t _{PWE}	WE Pulse Width	8		9		15		20		25		30		ns
t _{SD}	Data Set-Up to Write End	8		9		10		15		17		20		ns
t _{HD}	Data Hold from Write End	0		0		0		0		0		0		ns
t _{LZWE} WE HIGH to 2 2 3 3		3		3		3		ns						
t _{HZWE}	WE LOW to High Z ^[7,8]		7		7	0	10	0	11	0	15	0	15	ns


Notes:

6.

Test conditions assume signal transition time of 3 ns or less for -12 and -15 speeds and 5 ns or less for -20 and slower speeds, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} and t_{HZWE} is less than t_{LZWE} for any given device. t_{HZCE} and t_{HZWE} are specified with $C_L = 5$ pF as in part (b) in AC Test Loads and Waveforms. Transition is measured ±500 mV from steady-state voltage. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. 7. 8. 9.

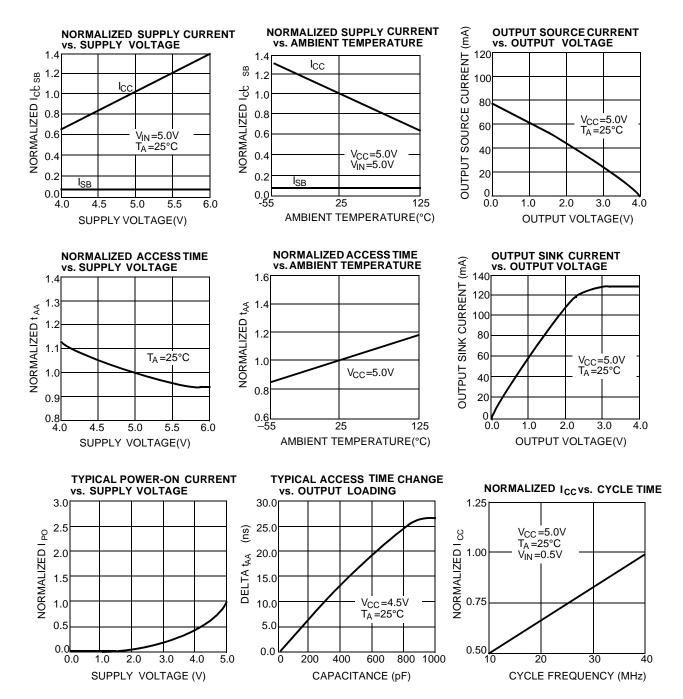
Switching Waveforms



Notes:

10. WE is HIGH for read cycle. 11. Device is continuously selected, $\overline{CE} = V_{|L}$.

Switching Waveforms (continued)



Note:

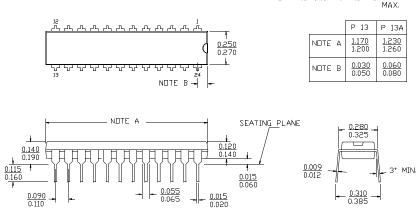
12. If \overline{CE} goes HIGH simultaneously with \overline{WE} HIGH, the output remains in a high-impedance state.

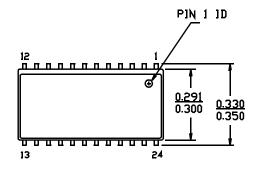
Typical DC and AC Characteristics

CY7C197 Truth Table

CE	WE	Input/Output	Mode
Н	Х	High Z	Deselect/Power-Down
L	Н	Data Out	Read
L	L	Data In	Write

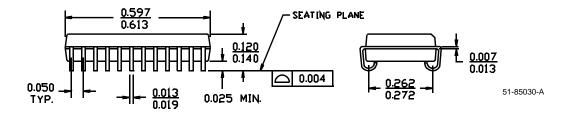
Ordering Information


Speed (ns)	Ordering Code Package		Package Type	Operating Range
12	CY7C197-12PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C197-12VC	V13	24-Lead Molded SOJ	
15	CY7C197-15PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C197-15VC	V13	24-Lead Molded SOJ	
20	CY7C197-20PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C197-20VC V13		Y7C197-20VC V13 24-Lead Molded SOJ	
25	CY7C197-25PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C197-25VC	V13	24-Lead Molded SOJ	
35	CY7C197-35PC P13		24-Lead (300-Mil) Molded DIP	Commercial
	CY7C197-35VC V13		24-Lead Molded SOJ	
45	CY7C197-45PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C197-45VC	V13	24-Lead Molded SOJ	


Package Diagrams

24-Lead (300-Mil) Molded DIP P13/P13A

DIMENSIONS IN INCHES MIN.



24-Lead (300-Mil) Molded SOJ V13

DIMENSIONS IN INCHES MIN. MAX.

51-85013-A

Page 9 of 10

© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges. Downloaded from Arrow.com.

Document Title: CY7C197 256K x 1 Static RAM Document Number: 38-05049							
REV.	A. Issue Orig. of Date Orig. of Change Description of Change						
**	107151	09/10/01	SZV	Change from Spec number: 38-00078 to 38-05049			