CD4046BC Connection Diagram PHASE PULSES PHASE COMP I OUT 13 PHASE COMP II OUT DEMODULATOR OUT Top View **Block Diagram** COMPARATOR PHASE COMP | DUT PHASE COMP II OUT O PHASE PULSES DEMODULATOR 10 OUT ZENER FIGURE 1.

Absolute Maximum Ratings(Note 1)

(Note 2)

 $\begin{array}{ll} \text{DC Supply Voltage (V}_{\text{DD}}) & -0.5 \text{ to } +18 \text{ V}_{\text{DC}} \\ \text{Input Voltage (V}_{\text{IN}}) & -0.5 \text{ to V}_{\text{DD}} +0.5 \text{ V}_{\text{DC}} \\ \text{Storage Temperature Range (T}_{\text{S}}) & -65^{\circ}\text{C to } +150^{\circ}\text{C} \end{array}$

Power Dissipation (P_D)

Dual-In-Line 700 mW Small Outline 500 mW

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions (Note 2)

DC Supply Voltage (V_{DD}) 3 to 15 V_{DC} Input Voltage (V_{IN}) 0 to V_{DD} V_{DC} Operating Temperature Range (T_A) -55°C to +125°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.

Note 2: $V_{SS} = 0V$ unless otherwise specified.

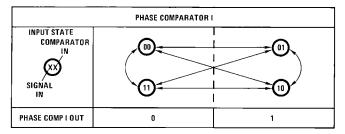
DC Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions	-5	–55°C +25°C		+12	5°C	Units		
Syllibol	Farameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device Current	Pin 5 = V _{DD} , Pin 14 = V _{DD} ,								
		Pin 3, 9 = V _{SS}								
		$V_{DD} = 5V$		5		0.005	5		150	
		$V_{DD} = 10V$		10		0.01	10		300	μΑ
		$V_{DD} = 15V$		20		0.015	20		600	
		Pin 5 = V _{DD} , Pin 14 = Open,								
		Pin 3, 9 = V _{SS}								
		$V_{DD} = 5V$		45		5	35		185	
		$V_{DD} = 10V$		450		20	350		650	μΑ
		$V_{DD} = 15V$		1200		50	900		1500	
V _{OL}	LOW Level Output Voltage	$V_{DD} = 5V$		0.05		0	0.05		0.05	
		$V_{DD} = 10V$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	
V _{OH}	HIGH Level Output Voltage	$V_{DD} = 5V$	4.95		4.95	5		4.95		
		$V_{DD} = 10V$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		
V _{IL}	LOW Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5		2.25	1.5		1.5	
	Comparator and Signal In	$V_{DD} = 10V, V_{O} = 1V \text{ or } 9V$		3.0		4.5	3.0		3.0	V
		$V_{DD} = 15V$, $V_{O} = 1.5V$ or $13.5V$		4.0		6.25	4.0		4.0	
V _{IH}	HIGH Level Input Voltage	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5	2.75		3.5		
	Comparator and Signal In	$V_{DD} = 10V, V_{O} = 1V \text{ or } 9V$	7.0		7.0	5.5		7.0		V
		$V_{DD} = 15V$, $V_{O} = 1.5V$ or $13.5V$	11.0		11.0	8.25		11.0		
I _{OL}	LOW Level Output Current	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36		
	(Note 4)	$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	8.8		2.4		
Гон	HIGH Level Output Current	$V_{DD} = 5V, V_{O} = 4.6V$	-0.64		-0.51	-0.88		-0.36		
	(Note 4)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-4.2		-3.4	-8.8		-2.4		
I _{IN}	Input Current	All Inputs Except Signal Input								
		$V_{DD} = 15V, V_{IN} = 0V$		-0.1		-10^{-5}	-0.1		-1.0	
		V _{DD} = 15V, V _{IN} = 15V		0.1		10 ⁻⁵	0.1		1.0	μΑ
C _{IN}	Input Capacitance	Any Input (Note 3)							7.5	pF
P _T	Total Power Dissipation	$f_0 = 10 \text{ kHz}, R1 = 1 \text{ M}\Omega,$								
		$R2 = \infty$, $VCO_{IN} = V_{CC}/2$								
		$V_{DD} = 5V$				0.07				
		$V_{DD} = 10V$				0.6				mW
		V _{DD} = 15V				2.4				

Note 3: Capacitance is guaranteed by periodic testing.

Note 4: \mathbf{I}_{OH} and \mathbf{I}_{OL} are tested one output at a time.

CD4046BC


MAX M:	perating Current aximum Operating Frequency	$\begin{split} &f_{o} = 10 \text{ kHz}, R1 = 1 M\Omega, \\ &R2 = \infty, VCO_{IN} = V_{CC}/2 \\ &V_{DD} = 5V \\ &V_{DD} = 10V \\ &V_{DD} = 15V \\ &C1 = 50 \text{ pF}, R1 = 10 k\Omega, \end{split}$		20		
MAX M:		$R2 = \infty, VCO_{IN} = V_{CC}/2$ $V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$				
	aximum Operating Frequency	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$				
	aximum Operating Frequency	$V_{DD} = 10V$ $V_{DD} = 15V$				
	aximum Operating Frequency	V _{DD} = 15V		22		1
	aximum Operating Frequency	I .		90		μΑ
	aximum Operating Frequency	C1 = 50 pF, R1 = 10 k Ω ,	1	200		
				1		
Liı		$R2 = \infty$, $VCO_{IN} = V_{DD}$				
Liı		$V_{DD} = 5V$	0.4	0.8		
Liı		V _{DD} = 10V	0.6	1.2		MH
Liı		V _{DD} = 15V	1.0	1.6		
	nearity	$VCO_{IN} = 2.5V \pm 0.3V,$		1		
		$R1 \ge 10 \text{ k}\Omega, V_{DD} = 5V$		1		
		$VCO_{IN} = 5V \pm 2.5V$,				0/
		$R1 \ge 400 \text{ k}\Omega, V_{DD} = 10V$		1		%
		$VCO_{IN} = 7.5V \pm 5V$				
		$R1 \ge 1 M\Omega$, $V_{DD} = 15V$		1		
Te	emperature-Frequency Stability	%/°C < 5c1/f. V _{DD}		1		
	No Frequency Offset, f _{MIN} = 0	R2 = ∞				
	••••	$V_{DD} = 5V$		0.12-0.24		
		V _{DD} = 10V		0.04-0.08		%/°
		V _{DD} = 15V		0.015-0.03		
Fr	requency Offset, f _{MIN} ≠ 0	V _{DD} = 5V		0.06-0.12		
	· · · · · · · · · · · · · · · · · · ·	V _{DD} = 10V		0.05-0.1		%/°
		V _{DD} = 15V		0.03-0.06		
/CO _{IN} In	put Resistance	V _{DD} = 5V		10 ⁶		
		V _{DD} = 10V		10 ⁶		MΩ
		V _{DD} = 15V		10 ⁶		
/CO O	utput Duty Cycle	V _{DD} = 5V		50		
		V _{DD} = 10V		50		%
		V _{DD} = 15V		50		
THL VO	CO Output Transition Time	$V_{DD} = 5V$		90	200	ns
THL		V _{DD} = 10V		50	100	
		V _{DD} = 15V		45	80	ns
HASE COMP	ARATORS SECTION			_		
in In	put Resistance					
	Signal Input	$V_{DD} = 5V$	1	3		
		V _{DD} = 10V	0.2	0.7		
		V _{DD} = 15V	0.1	0.3		
	Comparator Input	$V_{DD} = 5V$		10 ⁶		MΩ
		V _{DD} = 10V		10 ⁶		
		V _{DD} = 15V		10 ⁶		
AC	C-Coupled Signal Input Voltage	C _{SERIES} = 1000 pF		1		
Se	ensitivity	f = 50 kHz				
		$V_{DD} = 5V$		200	400	
		V _{DD} = 10V		400	800	m\
		$V_{DD} = 15V$		700	1400	
EMODULATO	OR OUTPUT	1 20 -	I	, , ,		<u> </u>

AC Electrical Characteristics (Continued)

Parameter	Conditions	Min	Тур	Max	Units
Offset Voltage	$RS \ge 10 \text{ k}\Omega, V_{DD} = 5V$		1.50	2.2	
	$RS \geq 10~k\Omega,~V_{DD} = 10V$		1.50	2.2	V
	$RS \geq 50~k\Omega,~V_{DD} = 15V$		1.50	2.2	
Linearity	$RS \ge 50 \text{ k}\Omega$				
	$VCO_{IN}=2.5V\pm0.3V,V_{DD}=5V$		0.1		
	$VCO_{IN} = 5V \pm 2.5V, V_{DD} = 10V$		0.6		%
	$VCO_{IN} = 7.5V \pm 5V, \ V_{DD} = 15V$		0.8		
DE			•		
Zener Diode Voltage	$I_Z = 50 \mu A$	6.3	7.0	7.7	V
Zener Dynamic Resistance	I _Z = 1 mA		100		Ω
	Offset Voltage Linearity DE Zener Diode Voltage	$\begin{array}{c} \text{Offset Voltage} & \text{RS} \geq 10 \ k\Omega, \ V_{DD} = 5V \\ \text{RS} \geq 10 \ k\Omega, \ V_{DD} = 10V \\ \text{RS} \geq 50 \ k\Omega, \ V_{DD} = 15V \\ \\ \text{Linearity} & \text{RS} \geq 50 \ k\Omega \\ \text{VCO}_{\text{IN}} = 2.5V \pm 0.3V, \ V_{DD} = 5V \\ \text{VCO}_{\text{IN}} = 5V \pm 2.5V, \ V_{DD} = 10V \\ \text{VCO}_{\text{IN}} = 7.5V \pm 5V, \ V_{DD} = 15V \\ \\ \text{DE} \\ \\ \text{Zener Diode Voltage} & I_Z = 50 \ \mu\text{A} \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Note 5: AC Parameters are guaranteed by DC correlated testing.

Phase Comparator State Diagrams

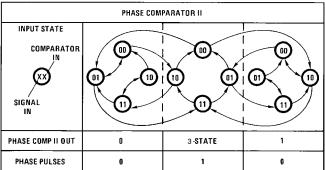
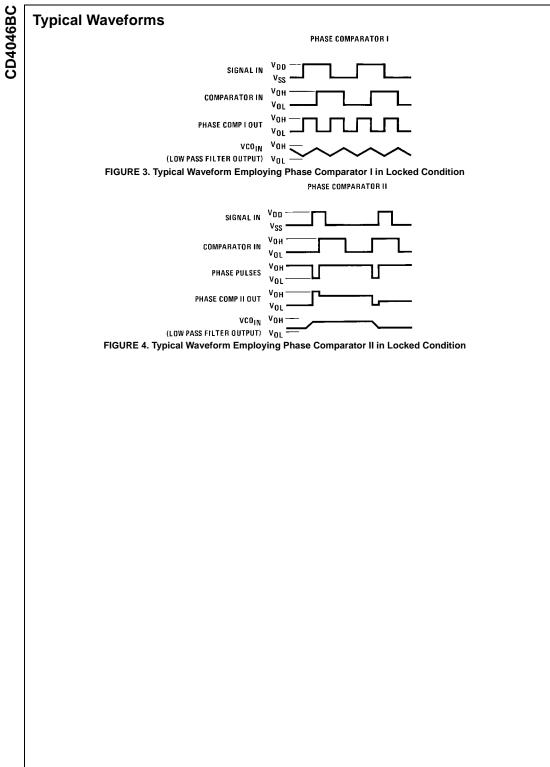
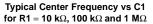
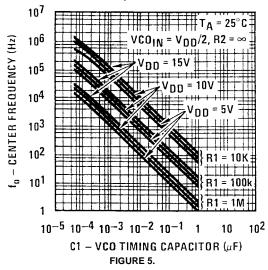
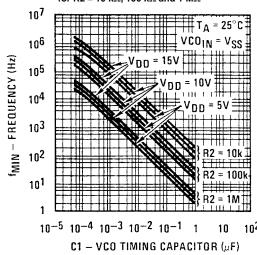
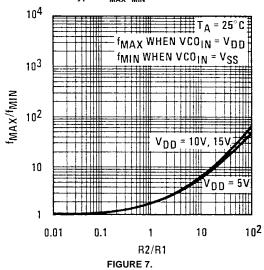





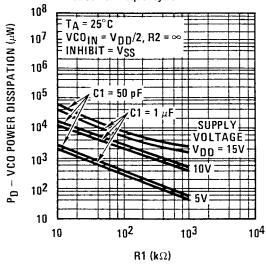
FIGURE 2.



Typical Performance Characteristics

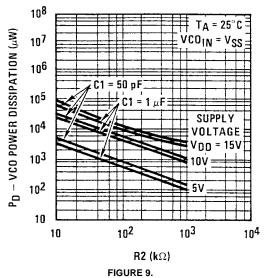


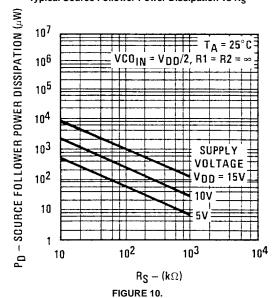
Typical Frequency vs C1 for R2 = 10 k Ω , 100 k Ω and 1 M Ω



Note: To obtain approximate total power dissipation of PLL system for no-signal input: Phase Comparator I, P_D (Total) = P_D (f_{O}) + P_D (f_{MIN}) + P_D (R_S); Phase Comparator II, P_D (Total) = P_D (f_{MIN}).

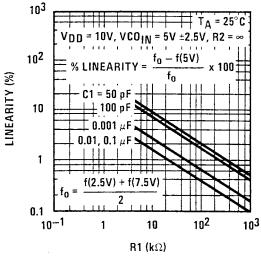
Typical Performance Characteristics (Continued) Typical f_{MAX}/f_{MIN} vs R2/R1


Typical VCO Power Dissipation at Center Frequency vs R1


FIGURE 8.

Note: To obtain approximate total power dissipation of PLL system for no-signal input: Phase Comparator I, P_D (Total) = P_D (f_{O}) + P_D (f_{MIN}) + P_D (R_S); Phase Comparator II, P_D (Total) = P_D (f_{MIN}).

Typical Performance Characteristics (Continued) Typical VCO Power Dissipation at f_{MIN} vs R2



Typical Source Follower Power Dissipation vs R_S

Note: To obtain approximate total power dissipation of PLL system for no-signal input: Phase Comparator I, P_D (Total) = P_D (f_O) + P_D (f_{MIN}) + P_D (R_S); Phase Comparator II, P_D (Total) = P_D (f_{MIN}).

Typical Performance Characteristics (Continued)

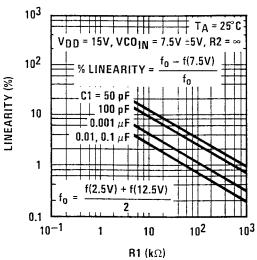


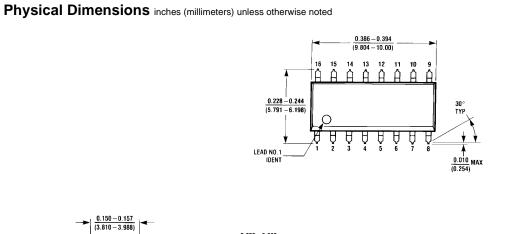
FIGURE 11. Typical VCO Linearity vs R1 and C1

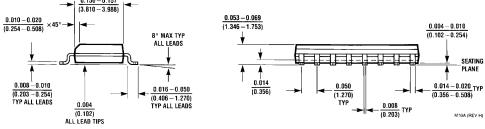
Note: To obtain approximate total power dissipation of PLL system for no-signal input: Phase Comparator I, P_D (Total) = P_D (f_{O}) + P_D (f_{MIN}) + P_D (R_S); Phase Comparator II, P_D (Total) = P_D (f_{MIN}).

Design Information

This information is a guide for approximating the value of external components for the CD4046B in a phase-locked-loop system. The selected external components must be within the following ranges: R1, R2 \geq 10 k Ω , R_S \geq 10 k Ω , C1 \geq 50 pE

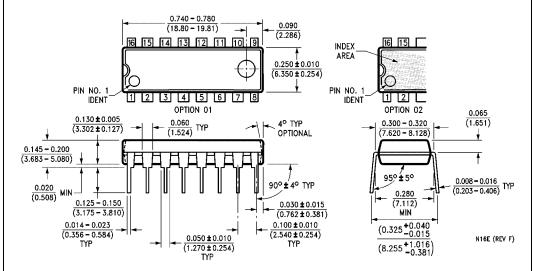
In addition to the given design information, refer to Figure 5, Figure 6, Figure 7 for R1, R2 and C1 component selections.


	Using Phase	Comparator I	Using Phase Comparator II			
Characteristics	VCO Without Offset R2 = ∞	VCO With Offset	VCO Without Offset R2 = ∞	VCO With Offset		
VCO Frequency	MAX 10 10 10 10 10 10 10 10 10 1	MAX fo 2tc MINN VOD/2 VDD VCD INPUT VOLTAGE	IMAX In 2 IL VOD/2 VOD VCO INPUT VOLTAGE	IMAX I S 21, I MIN VDD/2 VDD VCO INPUT VOLTAGE		
For No Signal Input	VCO in PLL system will adjust		VCO in PLL system will adjust to			
to center frequency, fo			lowest operating frequency, f _{min}			
Frequency Lock		2 f _L = full VCO f	frequency range			
Range, 2 f _L		$2 f_L = f_m$	_{nax} – f _{min}			
Frequency Capture Range, 2 f _C	1N O O DUT T1 = R3 C2 = C2	$2f_{\mathbb{C}}\approx\frac{1}{\pi}\sqrt{\frac{2\pif_{L}}{\tau1}}$				
Loop Filter Component Selection	N ○	For 2 f _C , see Ref.	f _C :	= f _L		
Phase Angle Between	90° at center frequency (f _o), approximating		Always 0° in lock			
Single and Comparator	0° and 180° at ends	s of lock range (2 f _L)				
Locks on Harmonics of Center Frequency	Yes		No			
Signal Input Noise Rejection	Hi	gh	Lo	ow.		


Design Information (Continued)

	Using Phase	Comparator I	Using Phase Comparator II			
Characteristics	VCO Without Offset	VCO With Offset	VCO Without Offset	VCO With Offset		
	R2 = ∞		R2 = ∞			
VCO Component	Given: f _o .	Given: fo and fL.	Given: f _{max} .	Given: f _{min} and f _{max} .		
Selection	Use fo with	Calculate f _{min}	Calculate fo from	Use f _{min} with		
	Figure 5 to	from the equation	the equation	Figure 6 to		
	determine R1 and C1.	$f_{min} = f_o - f_L.$	$f_0 = \frac{f_{max}}{2}$.	to determine R2 and C1.		
		Use f _{min} with Figure 6 to		Calculate		
		determine R2 and C1.		f _{max} f _{min}		
			Use fo with Figure 5 to			
		Calculate	determine R1 and C1.	Use		
		f _{max}		f _{max}		
		f _{min}		f _{min} with Figure 7		
		from the equation		to determine ratio		
		$\frac{f_{\text{max}}}{f_{\text{min}}} = \frac{f_0 + f_L}{f_0 - f_L}.$		R2/R1 to obtain R1.		
		Use				
		f _{max} f _{min} with Figure 7				
		to determine ratio R2/				
		R1 to obtain R1.				

References


G.S. Moschytz, "Miniaturized RC Filters Using Phase-Locked Loop", BSTJ, May, 1965. Floyd Gardner, "Phaselock Techniques", John Wiley & Sons, 1966.

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com