

Description (Continued)

64-bytes of data are internally latched, freeing the address and data bus for other operations. Following the initiation of a write cycle, the device will automatically write the latched data using an internal control timer. The end of a write cycle can be detected by DATA polling of I/O7. Once the end of a write cycle has been detected a new access for a read or write can begin.

Atmel's 28LV256 has additional features to ensure high quality and manufacturability. The device utilizes internal error correction for extended endurance and improved data retention characteristics. An optional software data protection mechanism is available to guard against inadvertent writes. The device also includes an extra 64-bytes of E²PROM for device identification or tracking.

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to +150°C
All Input Voltages (including NC Pins) with Respect to Ground0.6V to +6.25V
All Output Voltages with Respect to Ground0.6V to V _{CC} + 0.6V
Voltage on OE and A9 with Respect to Ground0.6V to +13.5V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

AT28LV256

Device Operation

READ: The AT28LV256 is accessed like a Static RAM. When CE and OE are low and WE is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in the high impedance state when either CE or OE is high. This dual-line control gives designers flexibility in preventing bus contention in their system.

BYTE WRITE: A low pulse on the \overline{WE} or \overline{CE} input with \overline{CE} or \overline{WE} low (respectively) and \overline{OE} high initiates a write cycle. The address is latched on the falling edge of \overline{CE} or \overline{WE} , whichever occurs last. The data is latched by the first rising edge of \overline{CE} or \overline{WE} . Once a byte write has been started it will automatically time itself to completion. Once a programming operation has been initiated and for the duration of two, a read operation will effectively be a polling operation.

PAGE WRITE: The page write operation of the AT28LV256 allows 1 to 64-bytes of data to be written into the device during a single internal programming period. A page write operation is initiated in the same manner as a byte write; the first byte written can then be followed by 1 to 63 additional bytes. Each successive byte must be written within 150 μ s (tBLC) of the previous byte. If the tBLC limit is exceeded the AT28LV256 will cease accepting data and commence the internal programming operation. All bytes during a page write operation must reside on the same page as defined by the state of the A6 - A14 inputs. For each WE high to low transition during the page write operation, A6 - A14 must be the same.

The A0 to A5 inputs are used to specify which bytes within the page are to be written. The bytes may be loaded in any order and may be altered within the same load period. Only bytes which are specified for writing will be written; unnecessary cycling of other bytes within the page does not occur.

DATA POLLING: The AT28LV256 features DATA Polling to indicate the end of a write cycle. During a byte or page write cycle an attempted read of the last byte written will result in the complement of the written data to be presented on I/O7. Once the write cycle has been completed, true data is valid on all outputs, and the next write cycle may begin. DATA Polling may begin at anytime during the write cycle.

TOGGLE BIT: In addition to DATA Polling the AT28LV256 provides another method for determining the end of a write cycle. During the write operation, successive attempts to read data from the device will result in I/O6 toggling between one and zero. Once the write has completed, I/O6 will stop toggling and valid data will be read. Reading the toggle bit may begin at any time during the write cycle.

DATA PROTECTION: If precautions are not taken, inadvertent writes may occur during transitions of the host system power supply. Atmel has incorporated both hardware and software features that will protect the memory against inadvertent writes.

HARDWARE PROTECTION: Hardware features protect against inadvertent writes to the AT28LV256 in the following ways: (a) VCC power-on delay - once VCC has reached 1.8V (typical) the device will automatically time out 10 ms (typical) before allowing a write: (b) write inhibit - holding any one of OE low, CE high or WE high inhibits write cycles; (c) noise filter - pulses of less than 15 ns (typical) on the WE or CE inputs will not initiate a write cycle.

SOFTWARE DATA PROTECTION: A software-controlled data protection feature has been implemented on the AT28LV256. Software data protection (SDP) helps prevent inadvertent writes from corrupting the data in the device. SDP can prevent inadvertent writes during power-up and power-down as well as any other potential periods of system instability.

The AT28LV256 can only be written using the software data protection feature. A series of three write commands to specific addresses with specific data must be presented to the device before writing in the byte or page mode. The same three write commands must begin each write operation. All software write commands must obey the page mode write timing specifications. The data in the 3-byte command sequence is not written to the device; the address in the command sequence can be utilized just like any other location in the device.

Any attempt to write to the device without the 3-byte sequence will start the internal write timers. No data will be written to the device; however, for the duration of two, read operations will effectively be polling operations.

DEVICE IDENTIFICATION: An extra 64-bytes of E^2PROM memory are available to the user for device identification. By raising A9 to $12V \pm 0.5V$ and using address locations 7FC0H to 7FFFH the additional bytes may be written to or read from in the same manner as the regular memory array.

DC and AC Operating Range

		AT28LV256-20	AT28LV256-25
Operating	Com.	0°C - 70°C	0°C - 70°C
Temperature (Case)	Ind.	-40°C - 85°C	-40°C - 85°C
Vcc Power Supply		3.3V ± 5%	3.3V ± 5%

Operating Modes

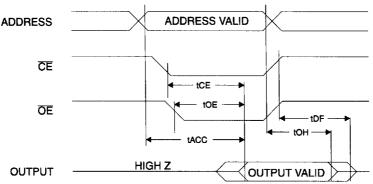
Mode	CE	ŌĒ	WE	1/0
Read	VIL	VIL	ViH	Dout
Write ⁽²⁾	V _{IL}	ViH	VIL	DIN
Standby/Write Inhibit	ViH	X ⁽¹⁾	Х	High Z
Write Inhibit	Х	Х	V _{IH}	
Write Inhibit	Х	V _{IL}	X	
Output Disable	Х	ViH	Х	High Z
Chip Erase	VIL	VH (3)	ViL	High Z

Notes: 1. X can be VIL or VIH.

3. $V_H = 12.0V \pm 0.5V$.

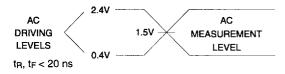
DC Characteristics

Symbol	Parameter	Condition		Min	Max	Units
lu	Input Load Current	V _{IN} = 0V to V _{CC} + 1V			10	μА
llo	Output Leakage Current	V _{I/O} = 0V to V _{CC}		7	10	μА
IsB	Vcc Standby Current CMOS	CE = V _{CC} - 0.3V to V _{CC} + 1V	Com.		20	μА
190	VCC Standby Current CiviCS	OE = VCC - 0.3V to VCC + TV	Ind.		50	μА
lcc	Vcc Active Current	f = 5 MHz; lout = 0 mA			15	mA
ViL	Input Low Voltage				0.6	V
ViH	Input High Voltage			2.0		V
VoL	Output Low Voltage	I _{OL} = 1.6 mA			0.3	V
Vон	Output High Voltage	loн = -100 μA		2.0	-	٧

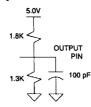

AT28LV256

^{2.} Refer to AC Programming Waveforms.

AC Read Characteristics


	L	AT28LV256-20		AT28LV256-25			
Symbol	Parameter	Min	Max	Min	Max	Units	
tacc	Address to Output Delay	. ,	200		250	ns	
tcE (1)	CE to Output Delay		200		250	ns	
toE (2)	OE to Output Delay	0	80	0	100	ns	
t _{DF} (3, 4)	CE or OE to Output Float	0	55	0	60	ns	
tон	Output Hold from OE, CE or Address, whichever occurred first	0		0		ns	

AC Read Waveforms (1, 2, 3, 4)



- Notes: 1. $\overline{\text{CE}}$ may be delayed up to t_{ACC} t_{CE} after the address transition without impact on t_{ACC} .
 - OE may be delayed up to t_{CE} t_{OE} after the falling edge of CE without impact on t_{CE} or by t_{ACC} - t_{OE} after an address change without impact on t_{ACC}.
- 3. t_{DF} is specified from \overline{OE} or \overline{CE} whichever occurs first (C_L = 5 pF).
- 4. This parameter is characterized and is not 100% tested.

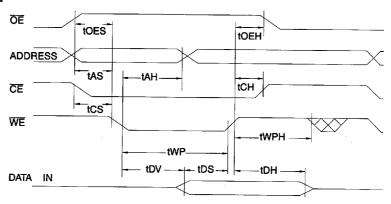
Input Test Waveforms and Measurement Level

Output Test Load

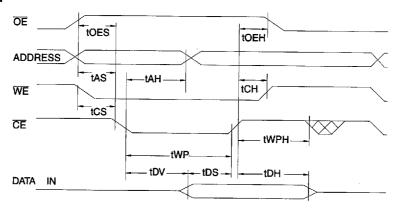
Pin Capacitance (f = 1 MHz, T = 25° C) (1)

	Тур	Max	Units	Conditions
Cin	4	6	pF	V _{IN} = 0V
Cout	8	12	pF	Vout = 0V

Note: 1. This parameter is characterized and is not 100% tested.


AC Write Characteristics

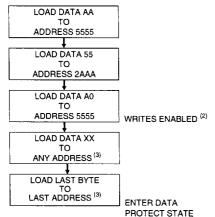
Symbol	Parameter	Min	Max	Units
tas, toes	Address, OE Set-up Time	0		ns
tah	Address Hold Time	50		ns
tcs	Chip Select Set-up Time	0		ns
tch	Chip Select Hold Time	0	0	
twp	Write Pulse Width (WE or CE)	200		пѕ
tos	Data Set-up Time	50		ns
tDH, tOEH	Data, OE Hold Time	0		ns
t _{DV}	Time to Data Valid	NR ⁽¹⁾	······································	


Note: 1. NR = No Restriction

AC Write Waveforms

WE Controlled

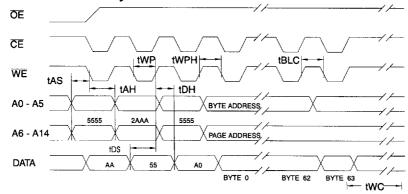
CE Controlled



AT28LV256

Page Mode Characteristics

Symbol	Parameter	Min	Max	Units
twc	Write Cycle Time		10	ms
tas	Address Set-up Time	0		ns
tah	Address Hold Time	50		ns
tos	Data Set-up Time	50	50	
ton	Data Hold Time	0		ns
twp	Write Pulse Width	200		ns
Byte Load Cycle Time			150	μs
twph	Write Pulse Width High	100		ns

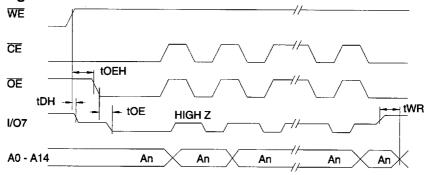

Programming Algorithm

Notes:

- 1. Data Format: I/O7 I/O0 (Hex); Address Format: A14 - A0 (Hex).
- 2. Data protect state will be re-activated at the end of program cycle.
- 3. 1 to 64-bytes of data are loaded.

Software Protected Write Cycle Waveforms (1, 2, 3)

- Notes: 1. A0 A14 must conform to the addressing sequence for 2. A6 through A14 must specify the same page address during the first three bytes as shown above.
 - each high to low transition of WE (or CE) after the software code has been entered.
 - 3. OE must be high only when WE and CE are both low.

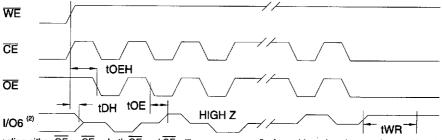

Data Polling Characteristics (1)

Symbol	Parameter	Min	Тур	Max	Units
tDH	Data Hold Time	0			ns
toeh	OE Hold Time	0			ns
toe	OE to Output Delay (2)				ns
twn	Write Recovery Time	0			ns

Notes: 1. These parameters are characterized and not 100% tested.

2. See AC Read Characteristics.

Data Polling Waveforms

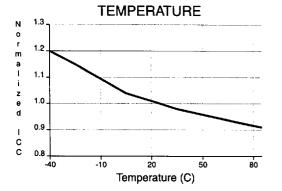

Toggle Bit Characteristics (1)

Symbol	Parameter	Min	Тур	Max	Units
ton	Data Hold Time	10			ns
tOEH	OE Hold Time	10			ns
toE	OE to Output Delay (2)				ns
toehp	OE High Pulse	150			ns
twn	Write Recovery Time 0				ns

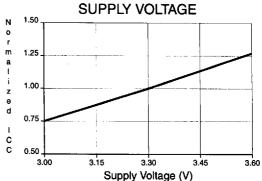
Notes: 1. These parameters are characterized and not 100% tested.

2. See AC Read Characteristics.

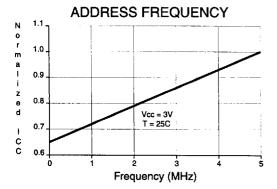
Toggle Bit Waveforms


Notes: 1. Toggling either \overline{OE} or \overline{CE} or both \overline{OE} and \overline{CE} will operate toggle bit.

Beginning and ending state of I/O6 will vary.


Any address location may be used but the address should not vary.

AT28LV256


NORMALIZED SUPPLY CURRENT vs.

NORMALIZED SUPPLY CURRENT vs.

NORMALIZED SUPPLY CURRENT vs.

Ordering Information (1)

tacc	Icc	(mA)	Ondering Code	D1	O
(ns)	(ns) Active Standby		Ordering Code	Package	Operation Range
200	80	0.2	AT28LV256-20JC AT28LV256-20PC AT28LV256-20SC AT28LV256-20TC	32J 28P6 28S 28T	Commercial (0°C to 70°C)
	80	0.2	AT28LV256-20JI AT28LV256-20PI AT28LV256-20SI AT28LV256-20TI	32J 28P6 28S 28T	Industrial (-40°C to 85°C)
250	80	0.2	AT28LV256-25JC AT28LV256-25PC AT28LV256-25SC AT28LV256-25TC	32J 28P6 28S 28T	Commercial (0°C to 70°C)
	80	0.2	AT28LV256-25JI AT28LV256-25PI AT28LV256-25SI AT28LV256-25TI	32J 28P6 28S 28T	Industrial (-40°C to 85°C)

Note: 1. See Valid Part Number table below.

Valid Part Numbers

The following table lists standard Atmel products that can be ordered.

Device Numbers	Speed	Package and Temperature Combinations
AT28LV256	20	JC, JI, PC, PI, SC, SI, TC, TI
AT28LV256	25	JC, JI, PC, PI, SC, SI, TC, TI

Package Type		
32J	32 Lead, Plastic J-Leaded Chip Carrier (PLCC)	
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)	· · · · · · · · · · · · · · · · · · ·
28S	28 Lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)	
28T	28 Lead, Plastic Thin Small Outline Package (TSOP)	