

rev 1.8

Pin Diagram

Pin Description

	Pin #		Pin			
ASM8091 5-SOT 23	ASM809 3-SOT 23	ASM810	Name	Function		
3	1	-	GND	Ground.		
1	2	-	RESET	$\overline{\text{RESET}}$ is asserted LOW if V_{CC} falls below V_{TH} and remains LOW for atleast 140mS (T_{RST}) after V_{CC} exceeds the threshold.		
-	-	2	RESET	RESET is asserted HIGH if V _{CC} falls below V _{TH} and remains HIGH for atleast 140mS (T _{RST}) after V _{CC} exceeds the threshold.		
2	3	-	V _{CC}	Power supply input voltage (3.0V, 3.3V, 5.0V).		

Detailed Description

A proper reset input enables a microprocessor / microcontroller to start in a known state. ASM809/ASM8091/ ASM810 assert reset to prevent code execution errors during power-up, power-down and brown-out conditions.

Reset Timing

The reset signal is asserted LOW for the ASM809,ASM8091 and HIGH for the ASM810 when the V_{CC} supply voltage falls below the threshold trip voltage and remains asserted for 140mS minimum after the V_{CC} has risen above the threshold.

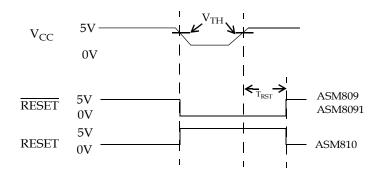
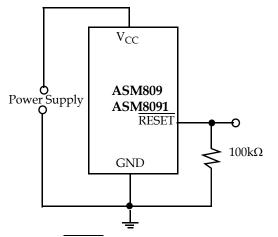
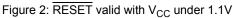


Figure 1: Reset TIming Diagram

rev 1.8


Application Information


Negative V_{CC} Transients

The ASM809/ASM8091/ASM810 protect μ pS from brownouts and low V_{CC}. Short duration transients of 100mV amplitude and 60 μ pS or less duration typically do not cause a false RESET.

Valid Reset with V_{CC} under 1.1V

When V_{CC} is under 1.1V, to ensure logic inputs connected to the ASM809,ASM8091 RESET pin are in a known state, a 100k Ω pull-down resistor is needed at RESET. The value of the resistor is not critical. A 100k Ω pull-up resistor to V_{CC} at RESET is needed with the ASM810.

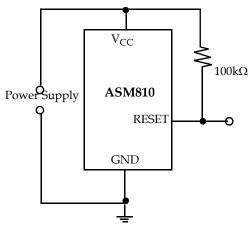
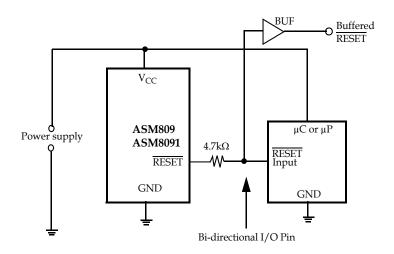



Figure 3: RESET valid with V_{CC} under 1.1V

Bidirectional Reset Pin Interfacing

The ASM809/ASM8091/ASM810 can interface with μ P / μ C bi-directional reset pins by connecting a 4.7k Ω resistor in series with the ASM809/ASM8091/ASM810 reset output and the μ P/ μ C bi-directional reset pin.

rev 1.8

Absolute Maximum Ratings Table 1:

Parameter	Min	Мах	Units				
Pin Terminal Voltage With Respect To Ground							
V _{CC}	-0.3	6.0	V				
RESET, RESET	-0.3	V _{CC} + 0.3	V				
Input current at V _{CC}		20	mA				
Output current: RESET, RESET		20	mA				
Rate of Rise at V_{CC}		100	V/µs				
ESD rating HBM MM		2 200	KV V				
Note: These are stress ratings only and the functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability.							

Absolute Maximum Ratings Table 2:

Parameter	Min	Мах	Units			
Power Dissipation ($T_A = 70^{\circ}C$)		320	mW			
Operating temperature range	-40	105	°C			
Storage temperature range	-65	160	°C			
Lead temperature (Soldering, 10 sec) 300 °C						
Note: These are stress ratings only and the functional operation is not implied. Exposure to absolute						

maximum ratings for prolonged time periods may affect device reliability.

rev 1.8

Electrical Characteristics:

Unless otherwise noted, V_{CC} is over the full voltage range, T_A = -40°C to 105°C.

Typical values at T_A = 25°C, V_{CC} = 5V for L/M/J devices, V_{CC} = 3.3V for T/S devices and V_{CC} = 3V for R devices.

Symbol	Parameter	C	onditions	Min	Тур	Max	Unit
V _{CC}	Input Voltage Range	$T_A = 0^{\circ}C$ to $70^{\circ}C$ $T_A = -40^{\circ}C$ to $105^{\circ}C$		1.1 1.2		5.5 5.5	V V
I _{CC}	Supply Current	T_A = -40°C to 85°C T_A = -40°C to 85°C T_A = 85°C to 105°C T_A = 85°C to 105°C	$V_{CC} < 5.5V$ $V_{CC} < 3.6V$ $V_{CC} < 5.5V$ $V_{CC} < 3.6V$		9 6.0	15 10 25 20	μA
V _{TH}	Reset Threshold	L devices	$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C$ to 85°C $T_A = 85^{\circ}C$ to 105°C	4.56 4.50 4.40	4.63	4.70 4.75 4.86	
		M devices	$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$ $T_A = 85^{\circ}C \text{ to } 105^{\circ}C$	4.31 4.25 4.16	4.38	4.45 4.50 4.56	
		J devices	$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$ $T_A = 85^{\circ}C \text{ to } 105^{\circ}C$	3.93 3.89 3.80	4.00	4.06 4.10 4.20	
		T devices	$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$ $T_A = 85^{\circ}C \text{ to } 105^{\circ}C$	3.04 3.00 2.92	3.08	3.11 3.15 3.23	V
		S devices	$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$ $T_A = 85^{\circ}C \text{ to } 105^{\circ}C$	2.89 2.85 2.78	2.93	2.96 3.00 3.08	
		R devices	$T_A = 25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$ $T_A = 85^{\circ}C \text{ to } 105^{\circ}C$	2.59 2.55 2.50	2.63	2.66 2.70 2.76	
	Reset Threshold Temp Coefficient				30		ppm/°C
	V _{CC} to Reset Delay	$V_{CC} = V_{TH}$ to V_{TH} -100	mV		20		μs

1. Production testing done at $T_A = 25^{\circ}$ C. Over-temperature specifications guaranteed by design only, using six sigma design limits.

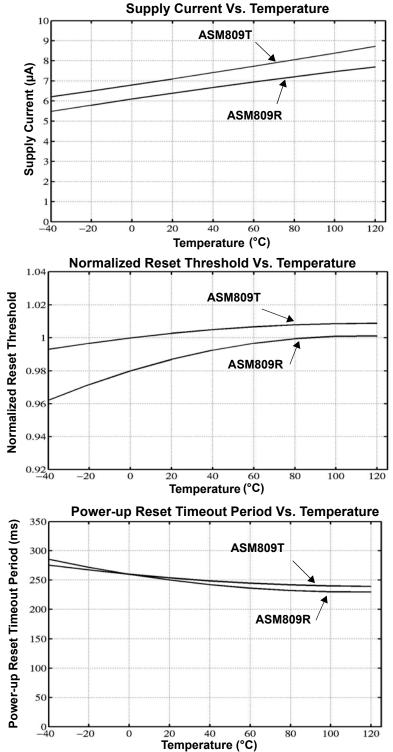
2. RESET output is active LOW for the ASM809/ASM8091 and RESET output is active HIGH for the ASM810.

ASM809,ASM8091,ASM810

July 2005

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
т	T Reset Active	$T_A = -40^{\circ}C$ to $85^{\circ}C$	140	240	560	
T _{RST}	Timeout Period	T _A = 85°C to 105°C	100		840	ms
	Low RESET Output Voltage	$V_{CC}\text{=}~V_{TH}$ min., $I_{SINK}\text{=}$ 1.2mA, ASM809R/S/T and ASM8091S			0.3	
V _{OL}	ASM809/	V _{CC} = V _{TH} min., I _{SINK} = 3.2mA, ASM809L/M/J			0.4	V
	ASM8091	V _{CC} > 1.1V, I _{SINK} = 50µA			0.3	
V _{OH} High RESET Output Voltag ASM809/ ASM8091	Output Voltage	V _{CC} > V _{TH} max., I _{SOURCE} = 500μA, ASM809R/S/T and ASM8091S	0.8V _{CC}			V
		V _{CC} > V _{TH} max., I _{SOURCE} = 800µA, ASM809L/M/J	V _{CC} - 1.5			
V _{OL} Low RESET Output Voltage ASM810		V _{CC} = V _{TH} max., I _{SINK} = 1.2mA, ASM810R/S/T			0.3	V
		V _{CC} = V _{TH} max., I _{SINK} = 3.2mA, ASM810L/M/J			0.4	V
V _{OH}	High RESET Output Voltage ASM810	1.8V < V _{CC} < V _{TH} min., I _{SOURCE} = 150µA	0.8V _{CC}			V
Notes:	r tooting done at $T = 1$	25°C Over temperature specifications guaranteed by design o		ma daaiar	limito	

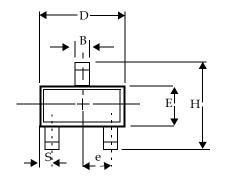
1. <u>Production</u> testing done at $T_A = 25^{\circ}$ C. Over-temperature specifications guaranteed by design only, using six sigma design limits.

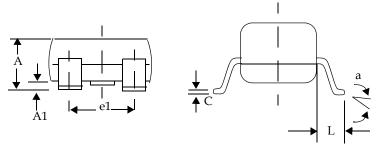

2. RESET output is active LOW for the ASM809/ASM8091 and RESET output is active HIGH for the ASM810.

rev 1.8

Typical Operating Characteristics

Unless otherwise noted, V_{CC} is over the full voltage range, T_A = -40°C to 105°C. Typical values at T_A = 25°C, V_{CC} = 5V for L/M/J devices, V_{CC} = 3.3V for T/S devices and V_{CC} = 3V for R devices.


ASM809,ASM8091,ASM810

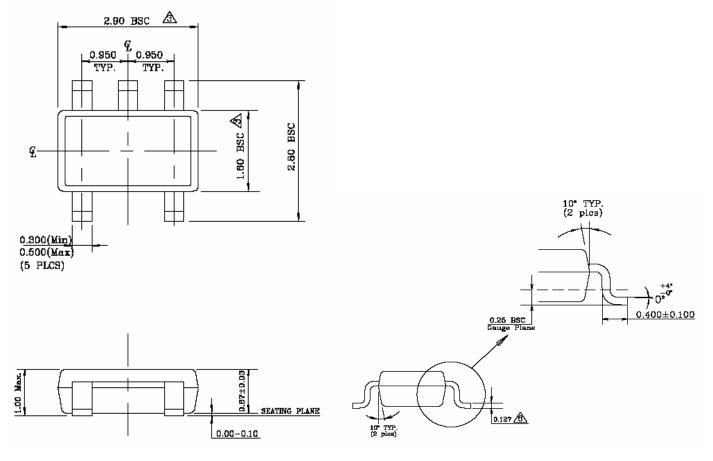

rev 1.8

Package Dimensions

Plastic SOT-23 (3-Pin)

	Incl	nes	Millim	eters			
	Min	Max	Min	Max			
	Plastic SOT-23 (3-Pin)						
А	0.030	0.046	0.75	1.17			
A1	0.002	0.006	0.05	0.15			
В	0.012	0.020	0.30	0.50			
С	0.003	0.008	0.08	0.20			
D	0.110	0.120	2.80	3.04			
Е	0.047	0.055	1.20	1.40			
е	0.037	BSC	0.95	BSC			
e1	0.075	BSC	1.9 E	BSC			
Н	0.083	0.104	2.10	2.64			
L	0.016	0.024	0.40	0.60			
а	0 ⁰	80	00	80			
S	NA NA			A			

3-Pin Microcontroller Power Supply Supervisor


Downloaded from Arrow.com.

Notice: The information in this document is subject to change without notice

rev 1.8

5L SOT- 23 Package

NOTE:

- 1. DIMENSIONS ARE IN MM.
- 2. DRAWING NOT TO SCALE.
- 3. DIMENSIONS ARE INCLUSIVE OF PLATING.
- 4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR.
- 5. MOLD FLASH SHALL NOT EXCEED 0.254MM.
- 6. JEDEC PACKAGE REFERENCE IS MO-193.

Notice: The information in this document is subject to change without notice

ASM809,ASM8091,ASM810

July 2005

rev 1.8

Ordering Information:

Part Number	Reset Threshold (V)	Temperature Range	Pin-Package	Package Marking (LL Lot Code)			
ASM809 ACTIVE LOW RESET, TIN-LEAD PLATED DEVICES							
ASM809LEUR	4.63	-40°C to +105°C	3-SOT23	SALL			
ASM809MEUR	4.38	-40°C to +105°C	3-SOT23	SBLL			
ASM809JEUR	4.00	-40°C to +105°C	3-SOT23	SCLL			
ASM809TEUR	3.08	-40°C to +105°C	3-SOT23	SDLL			
ASM809SEUR	2.93	-40°C to +105°C	3-SOT23	SELL			
ASM809REUR	2.63	-40°C to +105°C	3-SOT23	SFLL			
ASM8091SEUK	2.93	-40°C to +105°C	5-SOT23	LO83			
	ASM809 ACTIVE	LOW RESET, LEAD FREE	DEVICES				
ASM809LEURF	4.63	-40°C to +105°C	3-SOT23	NALL			
ASM809MEURF	4.38	-40°C to +105°C	3-SOT23	NBLL			
ASM809JEURF	4.00	-40°C to +105°C	3-SOT23	NCLL			
ASM809TEURF	3.08	-40°C to +105°C	3-SOT23	NDLL			
ASM809SEURF	2.93	-40°C to +105°C	3-SOT23	NELL			
ASM809REURF	2.63	-40°C to +105°C	3-SOT23	NFLL			
ASM8091SEUKF	2.93	-40°C to +105°C	5-SOT23	LO83			
	ASM810 ACTIVE HIG	H RESET, TIN-LEAD PLAT	ED DEVICES				
ASM810LEUR	4.63	-40°C to +105°C	3-SOT23	SGLL			
ASM810MEUR	4.38	-40°C to +105°C	3-SOT23	SHLL			
ASM810JEUR	4.00	-40°C to +105°C	3-SOT23	SILL			
ASM810TEUR	3.08	-40°C to +105°C	3-SOT23	SJLL			
ASM810SEUR	2.93	-40°C to +105°C	3-SOT23	SKLL			
ASM810REUR	2.63	-40°C to +105°C	3-SOT23	SLLL			
	ASM810 ACTIVE	HIGH RESET, LEAD FREE	DEVICES				
ASM810LEURF	4.63	-40°C to +105°C	3-SOT23	NGLL			
ASM810MEURF	4.38	-40°C to +105°C	3-SOT23	NHLL			
ASM810JEURF	4.00	-40°C to +105°C	3-SOT23	NILL			
ASM810TEURF	3.08	-40°C to +105°C	3-SOT23	NJLL			
ASM810SEURF	2.93	-40°C to +105°C	3-SOT23	NKLL			
ASM810REURF	2.63	-40°C to +105°C	3-SOT23	NLLL			

Notes:

• For parts to be packed in Tape and Reel, add "-T" at the end of the part number.

Alliance Semiconductor's lead free parts are RoHS compliant. All parts are Lead Free by default. Contact factory for Non Lead
Free devices

rev 1.8 Related Products:


	ASM809	ASM810	ASM811	ASM812	ASM8091
Max Supply Current	15µA	15µA	15µA	15µA	15µA
Package Pins	3	3	4	4	5
Manual RESET input					
Package Type	SOT-23	SOT-23	SOT-143	SOT-143	SOT-23
Active-HIGH RESET Output					
Active-LOW RESET Output					

3-Pin Microcontroller Power Supply Supervisor

11 of 12

Notice: The information in this document is subject to change without notice

Alliance Semiconductor Corporation 2575 Augustine Drive, Santa Clara, CA 95054 Tel: 408 - 855 - 4900 Fax: 408 - 855 - 4999 www.alsc.com Copyright © Alliance Semiconductor All Rights Reserved Part Number: ASM809,ASM8091,ASM810 Document Version: V.1.8

© Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale. The purchase of products from Alliance). All sales of convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.