TABLE OF CONTENTS

Features	•
Applications	
Functional Block Diagrams	
General Description	
Product Highlights	
Revision History	2
Specifications	
Dual Supply	:
Single Supply	
0 117	

Absolute Maximum Ratings6
ESD Caution6
Pin Configurations and Function Descriptions7
ADG1308 Truth Table7
ADG1309 Truth Table8
Typical Performance Characteristics9
Test Circuits
Terminology
Outline Dimensions
Ordering Guide14

REVISION HISTORY

4/06—Revision 0: Initial Version

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = +15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted. 1

Table 1.

Parameter	+25°C	-40°C to +105°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		V _{SS} to V _{DD}	V	
On Resistance, Ron	130		Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}$; see Figure 13
	210	300	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
On Resistance Match Between Channels, ΔR _{ON}	5		Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}$
	10		Ω max	
On Resistance Flatness, R _{FLAT} (On)	25		Ωtyp	$V_S = -5 \text{ V}, 0 \text{ V}, +5 \text{ V}, I_S = -1 \text{ mA}$
	70		Ω max	
LEAKAGE CURRENTS				
Source Off Leakage, Is (Off)	±1		nA typ	$V_D = \pm 10 \text{ V}, V_S = -10 \text{ V}$; see Figure 14
		±50	nA max	
Drain Off Leakage, I _D (Off)	±1		nA typ	$V_S = 1 \text{ V}, 10 \text{ V}; V_D = 10 \text{ V}, 1 \text{ V}; \text{ see Figure 14}$
5		±50	nA max	
Channel On Leakage, ID, IS (On)	±1		nA typ	$V_S = V_D = \pm 10 \text{ V}$; see Figure 15
3 /		±50	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current, I _{INL} or I _{INH}	±0.005		μA max	$V_{IN} = V_{INL}$ or V_{INH}
		±0.1	μA max	1
Digital Input Capacitance, C _{IN}	5		pF typ	
DYNAMIC CHARACTERISTICS ²			1 71	
Transition Time, transition	80		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
· · · · · · · · · · · · · · · · · · ·	130	190	ns max	V _s = 10 V; see Figure 16
ton (EN)	80		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	100	120	ns max	V _s = 10 V; see Figure 18
toff (EN)	85		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
(a. 7)	100	150	ns max	V _s = 10 V; see Figure 18
Break-Before-Make Time Delay, t _{BBM}	25		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
,, , , , , , , , , , , , , , , , , , ,		10	ns min	$V_{S1} = V_{S2} = 10 \text{ V}$; see Figure 17
Charge Injection	2		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}; \text{ see Figure 19}$
Off Isolation	80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 20
Channel-to-Channel Crosstalk	80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 21
–3 dB Bandwidth	500		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 22
Cs (Off)	5		pF typ	f = 1 MHz, V _S = 0 V
C _D (Off)	-			
ADG1308	15		pF typ	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$
ADG1309	10		pF typ	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$
C _D , C _s (On)			۳۰ ۰۶۳	
ADG1308	20		pF typ	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$
ADG1309	15		pF typ	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$

Parameter	+25°C	-40°C to +105°C	Unit	Test Conditions/Comments
POWER REQUIREMENTS				$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
IDD	0.002		μA typ	Digital inputs = 0 V or V_{DD}
		1.0	μA max	
I _{DD}	220		μA typ	Digital inputs = 5 V
		380	μA max	
Iss	0.002		μA typ	Digital inputs = 0 V or V_{DD} or 5 V
		1.0	μA max	
V_{DD}/V_{SS}		±5/±16.5	V min/V max	$ V_{DD} = V_{SS} $

 $^{^1}$ Temperature range for B version is –40°C to +105°C. 2 Guaranteed by design; not subject to production test.

SINGLE SUPPLY

 V_{DD} = 12 V, V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted. 1

Table 2.

Parameter	+25°C	-40°C to +105°C	Unit	Test Conditions/Comments
ANALOG SWITCH		10 010 1100 0	-	
Analog Signal Range		0 to V _{DD}	V	
On Resistance, R _{ON}	325	0 10 100	Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -1 \text{ mA}; \text{ see Figure } 13$
Off Resistance, Non	500	660	Ω max	$V_{DD} = 10.8 \text{ V}, V_{SS} = 0 \text{ V}$
On Resistance Match Between Channels, ΔR _{ON}	10	000	Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V}, V_{SS} = 0 \text{ V}$
Off hesistance Materi Detween Charmers, Anon	20		Ω max	V5 = 0 V to 10 V, 15 = 1 111/
On Resistance Flatness, R _{FLAT} (On)	65		Ωtyp	$V_S = 3 \text{ V}, 6 \text{ V}, 9 \text{ V}, I_S = -1 \text{ mA}$
LEAKAGE CURRENTS	05		12 (9)	V _{DD} = 13.2 V
Source Off Leakage, I _s (Off)	±1		nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; \text{ see Figure 14}$
Source on Leakage, 15 (OII)		±50	nA max	v ₅ = 1 v ₁ 10 v ₁ v ₀ = 10 v ₁ 1 v ₁ see rigate 11
Drain Off Leakage, I _D (Off)	±1	1.50	nA typ	V _S = 1 V/10 V, V _D = 10 V/1 V; see Figure 14
Diam on Ecakage, in (on)	'	±50	nA max	vs = 1 v/10 v, vb = 10 v/1 v, see rigate 14
Channel On Leakage, ID, IS (On)	±1	150	nA typ	$V_S = V_D = 1 \text{ V or } 10 \text{ V}; \text{ see Figure } 15$
Charmer on Leakage, 1D, 15 (OH)	<u>-</u> 1	±50	nA max	VS = VB = 1 V OI 10 V, see Figure 15
DIGITAL INPUTS		130	TIA IIIax	
Input High Voltage, V _{INH}		2.0	V min	
		0.8	V max	
Input Low Voltage, V _{INL} Input Current, I _{INL} or I _{INH}	10.001	0.8	VIIIax	
input current, IINL or IINH	±0.001	±0.1	uA may	$V_{IN} = V_{INL}$ or V_{INH}
Digital Innut Conscitons C	,	±0.1	μA max	VIN = VINL OF VINH
Digital Input Capacitance, C _{IN}	3		pF typ	
DYNAMIC CHARACTERISTICS ²	100			D 300 O C 35 "F
Transition Time, transition	100	240	ns typ	$R_L = 300 \Omega, C_L = 35 \text{pF}$
+ (FNI)	170	240		$V_S = 8 \text{ V}$; see Figure 16
ton (EN)	90	170	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
(5)	110	170		$V_s = 8 \text{ V}$; see Figure 18
t _{off} (EN)	105	400	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	130	180		$V_S = 8 \text{ V}$; see Figure 18
Break-Before-Make Time Delay, t _{BBM}	45		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
		20	ns min	$V_{S1} = V_{S2} = 8 \text{ V}$; see Figure 17
Charge Injection	2		pC typ	$V_S = 6 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; see Figure 19}$
Off Isolation	80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 20
Channel-to-Channel Crosstalk	80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 21
–3 dB Bandwidth	500		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 22
C _s (Off)	5		pF typ	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
C_D (Off)			_	
ADG1308	10		pF typ	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
ADG1309	15		pF typ	$f = 1 MHz, V_S = 6 V$
C_D , C_S (On)			_	
ADG1308	20		pF typ	$f = 1 \text{ MHz}, V_S = 6 \text{ V}$
ADG1309	15		pF typ	f = 1 MHz, V _S = 6 V
POWER REQUIREMENTS			_	$V_{DD} = 13.2 \text{ V}$
I_{DD}	0.002		μA typ	Digital inputs = 0 V or V _{DD}
		1.0	μA max	
l _{DD}	220		μA typ	Digital inputs = 5
		380	μA max	
V_{DD}		5/16.5	V min/V max	$V_{SS} = 0 \text{ V}, \text{GND} = 0 \text{ V}$

 $^{^1}$ Temperature range for the B version is –40°C to +105°C. 2 Guaranteed by design; not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

1 autc 3.	
Parameter	Rating
V _{DD} to V _{SS}	35 V
V _{DD} to GND	−0.3 V to +25 V
V _{ss} to GND	+0.3 V to −25 V
Analog, Digital Inputs ¹	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V or}$ 30 mA (whichever occurs first)
Continuous Current, S or D pins	30 mA
Peak Current, S or D pins (Pulsed at 1 ms, 10% Duty Cycle Maximum)	100 mA
Operating Temperature Range	
Industrial (B Version)	–40°C to +105°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
TSSOP, θ _{JA} , Thermal Impedance	112°C/W
16-Lead SOIC, θ _{JA} , Thermal Impedance	77°C/W
Reflow Soldering Peak Temperature (Pb-free)	260 (+0/-5)°C

¹ Overvoltages at A, EN, S, or D pins are clamped by internal diodes. Current should be limited to the maximum ratings provided.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

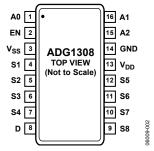


Figure 2. ADG1308 Pin Configuration (TSSOP and SOIC_N)

Table 4. ADG1308 Pin Function Descriptions

Pin Number	Mnemonic	Description
1	A0	Logic Control Input A0.
2	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
3	V _{SS}	Most Negative Power Supply Potential. In single supply applications, this pin can be connected to ground.
4	S1	Source Terminal 1. Can be an input or an output.
5	S2	Source Terminal 2. Can be an input or an output.
6	S3	Source Terminal 3. Can be an input or an output.
7	S4	Source Terminal 4. Can be an input or an output.
8	D	Drain Terminal. Can be an input or an output.
9	S8	Source Terminal 8. Can be an input or an output.
10	S7	Source Terminal 7. Can be an input or an output.
11	S6	Source Terminal 6. Can be an input or an output.
12	S5	Source Terminal 5. Can be an input or an output.
13	V_{DD}	Most Positive Power Supply Potential.
14	GND	Ground (0 V) Reference.
15	A2	Logic Control Input A2.
16	A1	Logic Control Input A1.

ADG1308 TRUTH TABLE

Table 5.

A2	A1	A0	EN	ON SWITCH	
X1	X ¹	X ¹	0	NONE	
0	0	0	1	1	
0	0	1	1	2	
0	1	0	1	3	
0	1	1	1	4	
1	0	0	1	5	
1	0	1	1	6	
1	1	0	1	7	
_1	1	1	1	8	

 $^{^{1}}$ X = Don't care.

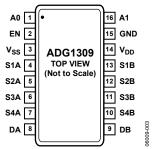


Figure 3. ADG1309 Pin Configuration (TSSOP and SOIC_N)

Table 6. ADG1309 Pin Function Descriptions

Pin Number		
SOIC/TSSOP	Mnemonic	Description
1	A0	Logic Control Input A0.
2	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
3	V _{SS}	Most Negative Power Supply Potential. In single supply applications, this pin can be connected to ground.
4	S1A	Source Terminal 1A. Can be an input or an output.
5	S2A	Source Terminal 2A. Can be an input or an output.
6	S3A	Source Terminal 3A. Can be an input or an output.
7	S4A	Source Terminal 4A. Can be an input or an output.
8	DA	Drain Terminal A. Can be an input or an output.
9	DB	Drain Terminal B. Can be an input or an output.
10	S4B	Source Terminal 4B. Can be an input or an output.
11	S3B	Source Terminal 3B. Can be an input or an output.
12	S2B	Source Terminal 2B. Can be an input or an output.
13	S1B	Source Terminal 1B. Can be an input or an output.
14	V_{DD}	Most Positive Power Supply Potential.
15	GND	Ground (0 V) Reference.
16	A1	Logic Control Input A1.

ADG1309 TRUTH TABLE

Table 7.

Al	A0	EN	ON SWITCH PAIR
X ¹	X ¹	0	NONE
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

¹ X = Don't care.

TYPICAL PERFORMANCE CHARACTERISTICS

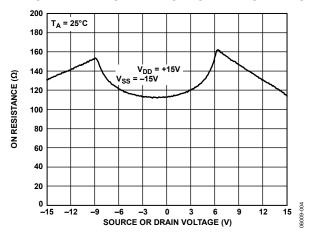


Figure 4. On Resistance as a Function of V_D (V_S) for Dual Supply

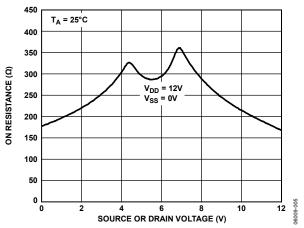


Figure 5. On Resistance as a Function of $V_D(V_S)$ for Single Supply

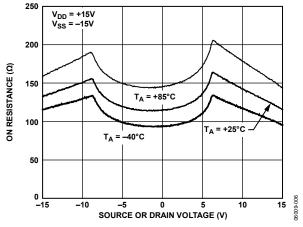


Figure 6. On Resistance as a Function of $V_D(V_S)$ for Different Temperatures, Dual Supply

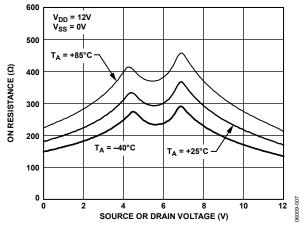


Figure 7. On Resistance as a Function of $V_D(V_S)$ for Different Temperatures, Single Supply

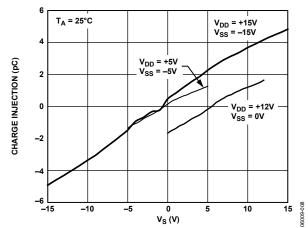


Figure 8. Charge Injection vs. Source Voltage

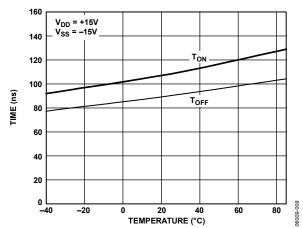


Figure 9. T_{ON}/T_{OFF} Time vs. Temperature

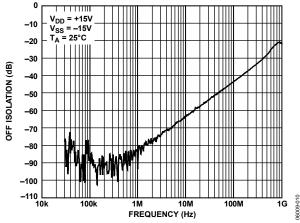


Figure 10. Off Isolation vs. Frequency

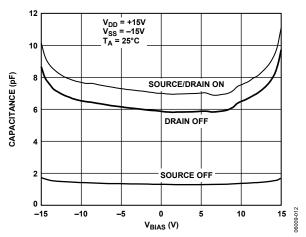


Figure 11. ADG1308 Capacitance vs. Source Voltage, ±15 V Dual Supply

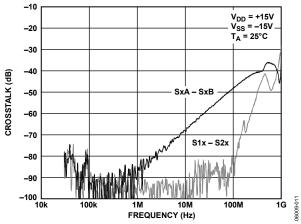
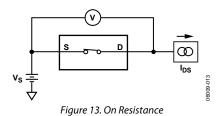
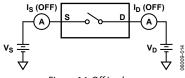




Figure 12. Crosstalk vs. Frequency

TEST CIRCUITS

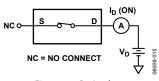


Figure 14. Off Leakage Figure 15. On Leakage

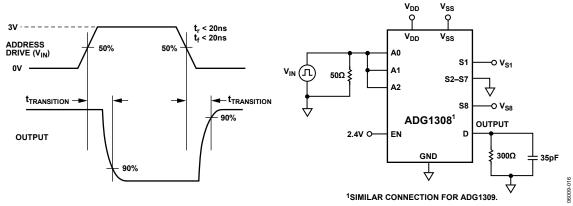


Figure 16. Address to Output Switching Times, ttransition

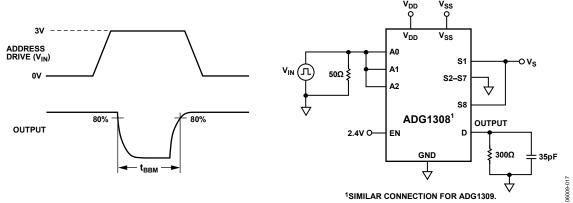


Figure 17. Break-Before-Make Delay, tbbm

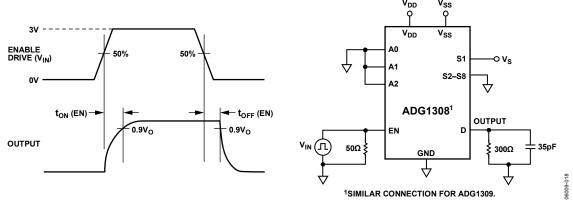


Figure 18. Enable Delay, ton (EN), toff (EN)

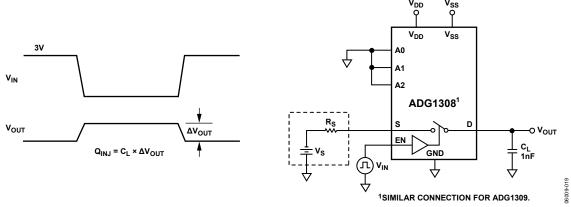


Figure 19. Charge Injection

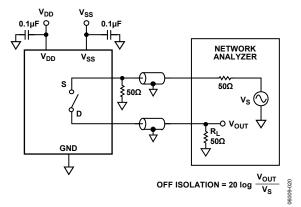


Figure 20. Off Isolation

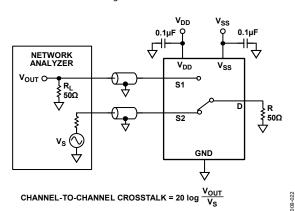


Figure 21. Channel-to-Channel Crosstalk

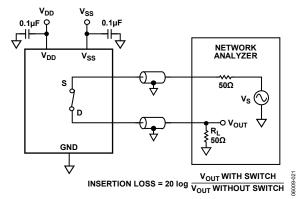


Figure 22. Bandwidth

TERMINOLOGY

Ron

Ohmic resistance between D and S.

 ΔR_{ON}

Difference between the Ron of any two channels.

Is (Off)

Source leakage current when the switch is off.

I_D (Off)

Drain leakage current when the switch is off.

 I_D , I_S (On)

Channel leakage current when the switch is on.

 $\mathbf{V}_{\mathrm{D}}\left(\mathbf{V}_{\mathrm{S}}\right)$

Analog voltage on Terminal D and Terminal S.

Cs (Off)

Channel input capacitance for off condition.

C_D (Off)

Channel output capacitance for off condition.

 C_D , C_S (On)

On switch capacitance.

 C_{IN}

Digital input capacitance.

ton (EN)

Delay time between the 50% and 90% points of the digital input and switch on condition.

toff (EN)

Delay time between the 50% and 90% points of the digital input and switch off condition.

ttransition

Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

 T_{BBM}

Off time measured between the 80% point of both switches when switching from one address state to another.

 V_{INL}

Maximum input voltage for Logic 0.

 $\mathbf{V}_{ ext{INH}}$

Minimum input voltage for Logic 1.

 $I_{INL}(I_{INH})$

Input current of the digital input.

 \mathbf{I}_{DD}

Positive supply current.

 $I_{ss} \\$

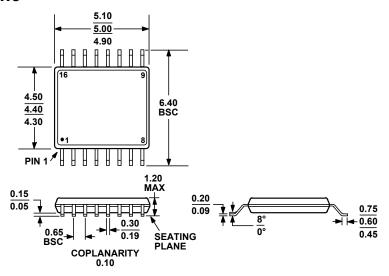
Negative supply current.

Off Isolation

A measure of unwanted signal coupling through an off channel.

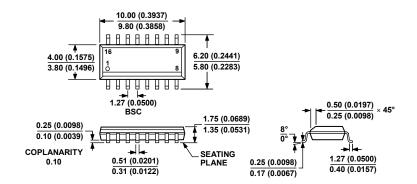
Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.


Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response


The frequency response of the on switch.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 23. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012-AC
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 24. 16-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-16)

Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG1308BRUZ ¹	-40°C to +105°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1308BRUZ-REEL7 ¹	-40°C to +105°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1308BRZ ¹	-40°C to +105°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG1308BRZ-REEL7 ¹	-40°C to +105°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG1309BRUZ ¹	-40°C to +105°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1309BRUZ-REEL7 ¹	-40°C to +105°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1309BRZ ¹	-40°C to +105°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16
ADG1309BRZ-REEL7 ¹	-40°C to +105°C	16-Lead Narrow Body Small Outline Package [SOIC_N]	R-16

 $^{^{1}}$ Z = RoHS Compliant Part.

NOTES

A	D	G	1	3	0	8	/A	D	G	1	3	0	9	

NOTES

