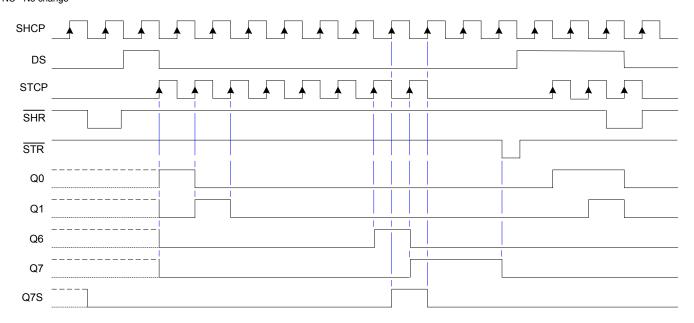

Pin Descriptions

Pin Number	Pin Name	Functions
1	Q1	Parallel Data Output 1
2	Q2	Parallel Data Output 2
3	Q3	Parallel Data Output 3
4	Q4	Parallel Data Output 4
5	Q5	Parallel Data Output 5
6	Q6	Parallel Data Output 6
7	Q7	Parallel Data Output 7
8	GND	Ground
9	Q7S	Serial Data Output
10	SHR	Shift Register Reset active low
11	SHCP	Shift Register Clock Input
12	STCP	Storage Register Clock Input
13	STR	Storage Register Reset active low
14	DS	Serial Data input
15	Q0	Parallel Data Output 0
16	Vcc	Supply Voltage

Functional Diagram

Logic Diagram



Functional Description and Timing Diagram

	Control			Input	Ot	utput	Formation	
SHR	STR	SHCP	STCP	DS	Q7S	Qn	Function	
L	Х	Х	Х	Х	L	NC	Clear Shift Register	
Х	L	Х	Х	Х	NC	L	Clear Storage Register	
Н	Х	1	L	H or L	Q6S	NC	Loads DS into shift register stage 0. All Q _S shifted	
Н	Н	Х	1	Х	NC	Qs Contents of shift register moved to starge register all Q _S -> Q _N		
Н	Н	1	1	H or L	Q6S	QnS	Shift Register one pulse count ahead of storage register.	

H=HIGH voltage state L=LOW voltage state ↑=LOW to HIGH transition X= don't care – high or low (not floating) NC= No change

Absolute Maximum Ratings (Note 4) (@T_A = +25°C, unless otherwise specified.)

Symbol	Parameter	Rating	Unit
ESD HBM	Human Body Model ESD Protection	2	kV
ESD CDM	Charged Device Model ESD Protection	1	kV
ESD MM	Machine Model ESD Protection	200	V
Vcc	Supply Voltage Range	-0.5 to +7.0	V
VI	Input Voltage Range	-0.5 to +7.0	V
Vo	Voltage applied to output in high or low state	-0.3 to V _{CC} +0.5	V
I _{IK}	Input Clamp Current V _I < -0.5V	-20	mA
lok	Output Clamp Current Vo<-0.5V	-20	mA
lok	Output Clamp Current V _O > V _{CC} +0.5V	20	mA
Io	Continuous output current	±25	mA
Icc	Continuous current through Vcc	75	mA
I _{GND}	Continuous current through GND	-75	mA
TJ	Operating Junction Temperature	-40 to +150	°C
T _{STG}	Storage Temperature	-65 to +150	°C
P _{TOT}	Total Power Dissipation	500	mW

Notes: 4. Stresses beyond the absolute maximum may result in immediate failure or reduced reliability. These are stress values and device operation should be within recommend values.

Recommended Operating Conditions (Note 5) (@TA = +25°C, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Max	Unit
Vcc	Supply Voltage	_	2.0	5.5	V
VI	Input Voltage	-	0	5.5	V
Vo	Output Voltage	_	0	V _{CC}	V
Δt/ΔV	Input transition Rise or Fall Rate	V _{CC} = 3.0V to 3.6V	-	100	20/1
ΔυΔν	Imput transition Rise of Fall Rate	V _{CC} = 4.5V to 5.5V	-	20	ns/V
TA	Operating Free-Air Temperature	-	-40	+125	°C

Note:

Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

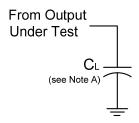
Symbol	Parameter	Test Conditions	V	TA	= +25°	С	T _A = -40°C	to +85°C	T _A = -40°0	C to +125°C	Unit
Syllibol	Parameter	rest Conditions	V _{CC}	Min	Тур	Max	Min	Max	Min	Max	Unit
		-	2.0V	1.5	_	_	1.5	-	1.5	-	
V_{IH}	High-Level Input Voltage	_	3.0V	2.1	_	_	2.1	-	2.1	-	V
	Imput Voltage	-	5.5V	3.85	_	_	3.85	-	3.85	-	
		_	2.0V	_	_	0.5	_	0.5	_	0.5	
V_{IL}	Low-Level Input Voltage	_	3.0V	_	_	0.9	_	0.9	_	0.9	V
	Input Voltage	_	5.5V	-	_	1.65	-	1.65	-	1.65	
		I _{OH} = -50μA	2.0V	1.9	2.0	_	1.9	-	1.9	-	
		I _{OH} = -50μA	3.0V	2.9	3.0	_	2.9	-	2.9	-	
VoH	High-Level Output Voltage	I _{OH} = -50μA	4.5V	4.4	4.5	_	4.4	-	4.4	-	V
	Cutput Voltage	$I_{OH} = -4mA$	3.0V	2.58	-	_	2.48	-	2.40	-	
		I _{OH} = -8mA	4.5V	3.94	-	_	3.80	-	3.70	-	
		I _{OL} = 50μA	2.0V	_	0	0.1	-	0.1	-	0.1	
		I _{OL} = 50μA	3.0V	_	0	0.1	_	0.1	_	0.1	
V_{OL}	Low-Level Output Voltage	I _{OL} = 50μA	4.5V	_	0	0.1	-	0.1	-	0.1	V
	Output Voltage	I _{OL} = 4mA	3.0V	_	-	0.36	-	0.44	-	0.55	
		I _{OL} = 8mA	4.5V	_	-	0.36	-	0.44	-	0.55	
II	Input Current	V _I = GND or 5.5V	5.5V	_	0.01	± 0.1	=	± 1	=	± 2	μΑ
Icc	Supply Current	$V_I = GND \text{ or } V_{CC}$ $I_O = 0$	5.5V	-	_	4	-	40	-	80	μA
Ci	Input Capacitance	$V_i = V_{CC}$ or GND	5.5V	-	3.5	10	=	10	=	10	pF

^{5.} Unused inputs should be held at V_{CC} or Ground.

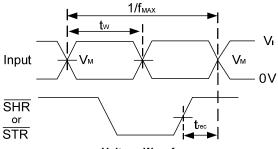
Switching Characteristics

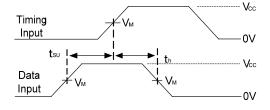
Symbol /	Din a	Took Conditions	V	Т	_A = +25°	С	-40°C to	+85°C	-40°C to	+125°C	Unit
Parameter	Pins	Test Conditions	V _{CC}	Min	Тур	Max	Min	Max	Min	Max	Unit
f _{MAX}	SHCP or		3.0V to 3.6V	80	125	_	70	_	65	_	
Maximum Frequency	STCP	Figure1	4.5V to 5.5V	90	70	_	80	-	70	-	MHz
	SHCP and		3.0V to 3.6V	6.0	-	-	6.5	=	7.0	-	
tw	STCP HIGH or LOW	Figure1	4.5V to 5.5V	5.5	=	=	6.0	=	6.5	=	ns
Pulse Width	SHR and STR	Figure1	3.0V to 3.6V	5.0	-	-	5.0	=	5.5	-	
	HIGH or LOW	rigulei	4.5V to 5.5V	5.0	-	_	5.2	İ	5.7	-	
	DS to SHCP	Figure1	3.0V to 3.6V	3.5	-	=	3.5	=	3.5	-	ns
	DS 10 SHCP	rigule i	4.5V to 5.5V	3.0	-	_	3.0	İ	3.0	_	115
t _{SU}	SHR to STCP	Figure1	3.0V to 3.6V	8.0	-	_	9.0	İ	9.5	-	
Set-up Time	SHR to STCP	rigure i	4.5V to 5.5V	5.0	-	_	5.0	-	5.5	_	
	SHCP tp	Figure1	3.0V to 3.6V	8.0	-	_	8.5	-	9.0	_	ns
	STCP	rigurer	4.5V to 5.5V	5.0	-	_	5.0	-	5.5	-	113
t _H	DS to SHCP	Figure1	3.0V to 3.6V	1.5	-	_	1.5	İ	1.5	_	no
Hold Time	DS 10 SHCP	rigule i	4.5V to 5.5V	2.0	-	_	2.0	İ	2.0	-	ns
	OUD to OUOD	Figure1	3.0V to 3.6V	4.2	-	_	4.8	-	5.3	_	no
t _{REC}	SHR to SHCP	rigule i	4.5V to 5.5V	2.9	-	_	3.3	-	3.8	_	ns
Recovery Time	OUD (OTOD	Figure 1	3.0V to 3.6V	4.6	-	_	5.3	-	5.8	_	20
	SHR to STCP	Figure1	4.5V to 5.5V	3.2	-	_	3.7	-	4.3	_	ns
		Figure 4.0 45 a F	3.0V to 3.6V	_	5.2	8.5	2.2	9.7	2.2	10.6	
	CLICD to OZC	Figure1 C _L = 15pF	4.5V to 5.5V	_	3.8	6.3	1.7	7.2	1.7	7.8	200
touu	SHCP toQ7S t _{PLH} LOW to HIGH	Figure 4 C = 50gF	3.0V to 3.6V	_	7.4	11.5	3.0	13.2	3.0	14.3	ns
LOW to HIGH		Figure1 C _L = 50pF	4.5V to 5.5V	_	4.8	8.0	2.4	9.1	2.4	10.0	
Propagation		Figure 4 C = 45°5	3.0V to 3.6V	=	5.1	8.3	2.3	9.5	2.3	10.6	
Delay	CTCD to Or	Figure1 C _L = 15pF	4.5V to 5.5V	_	3.5	5.7	1.8	6.5	1.8	7.1	
	STCP to Qn	Figure 4.0 50g F	3.0V to 3.6V	=	7.3	11.9	3.3	13.6	3.3	14.7	ns
		Figure1 C _L = 50pF	4.5V to 5.5V	=	4.8	7.8	2.6	9.0	2.6	9.8	

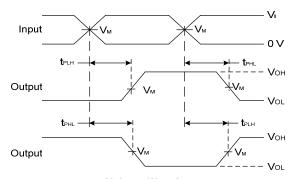
Switching Characteristics (cont.)


Symbol /	Pins	Test Conditions	V	Т	A = +25°	С	-40°C°C	to +85°C	-40°C°C	to +125°C	Unit	
Parameter	Pilis	rest Conditions	V _{CC}	Min	Тур	Max	Min	Max	Min	Max	Unit	
		Figure 4.C = 45pF	3.0V to 3.6V	_	5.5	8.9	2.3	10.2	2.3	11.0		
	CUCD 4-070	Figure 1 C _L = 15pF	4.5V to 5.5V	_	4.1	6.7	1.9	7.6	1.9	8.2	ns	
	SHCP toQ7S		3.0V to 3.6V	_	7.4	12.1	3.0	13.9	3.0	15.1		
		Figure 1 C _L = 50pF	4.5V to 5.5V	_	5.4	8.8	2.5	10.1	2.5	11.0		
		Figure 4.0 45.5	3.0V to 3.6V	-	5.5	9.1	2.4	10.4	2.4	11.3		
	STCP to Qn	Figure 1 C _L = 15pF	4.5V to 5.5V	-	3.7	6.0	1.9	6.9	1.9	7.5		
tрнLн	STOP to Qn	Figure 4.0 50 F	3.0V to 3.6V	_	7.3	12.0	3.2	13.8	3.2	15.0	ns	
HIGH to LOW		Figure 1 C _L = 50pF	4.5V to 5.5V	_	5.2	8.5	2.6	9.7	2.6	10.5		
Propagation		Figure 4.0 45 F	3.0V to 3.6V	_	5.7	9.5	2.3	10.8	2.3	11.7		
Delay	SHR to	Figure 1 C _L = 15pF	4.5V to 5.5V	=	4.1	6.7	2.0	7.6	2.0	8.2		
	Q7S	Figure 4.0 50 F	3.0V to 3.6V	=	7.5	12.2	3.6	14.0	3.6	15.2	ns	
		Figure 1 C _L = 50pF	4.5V to 5.5V	=	5.4	8.8	2.8	10.1	2.8	11.0		
		Figure 1 C _L = 15pF	3.0V to 3.6V	=	4.1	7.2	2.2	8.2	2.2	8.9		
	STR to Qn		4.5V to 5.5V	=	4.1	7.2	2.2	8.2	2.2	8.9		
		to Qn	Figure 4.0 50 F	3.0V to 3.6V	=	5.4	9.4	3.0	10.7	3.0	11.6	ns
		Figure 1 C _L = 50pF	4.5V to 5.5V	=	5.4	9.4	3.0	10.7	3.0	11.6		
			2.0V	_	39	150	_	185	_	225		
			Figure 1	4.5V	_	14	30	_	37	_	45	
	SHR to Q7S	3	5.0V	_	11	_	_	-	_	_	ns	
t _{PHL}			6.0V	_	12	26	_	31	_	38		
Propagation Delay			2.0V	_	39	125	_	155	_	185		
Delay	 , o	Figure 1	4.5V	-	14	25	_	31	_	37		
	STR to Qn		5.0V	-	11	_	_	-	_	-	ns	
			6.0V	-	12	21	-	26	_	31		
		F. 4	2.0V	_	19	75	_	95	_	110		
	Serial data output Q7S	Figure 1	4.5V	_	7	15	_	19	-	22	ns	
t _{THL}	σαιραί απο		6.0V	-	6	13	-	16	_	19		
Transition Time	Devellet Det	Fire and	2.0V	_	14	60	_	75	-	90		
11110	Parallel Data Outputs Q _N	Figure 1	4.5V	_	5	12	_	15	-	18	ns	
	Outputs QN		6.0V	_	4	10	_	13	-	15		

Operating Characteristics (@T_A = +25°C, unless otherwise specified.)


	Parameter	Test	V _{CC} = 5V	Unit
Parameter		Conditions	Тур	Onne
$C_{\sf pd}$	Power dissipation capacitance	f = 1 MHz all outputs switching-no load	51	pF

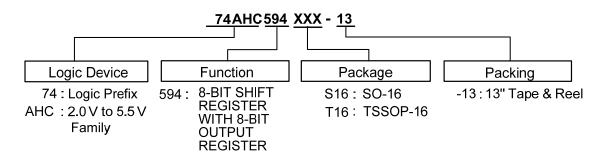

Parameter Measurement Information


.,	In	puts	
V _{CC}	VI	t _r /t _f	V _M
4.5V	Vcc	6ns	V _{CC} /2
5.0V	V _{CC}	6ns	V _{CC} /2

Voltage Waveform Pulse Duration and Recovery Time

Voltage Waveform Set-up and Hold Times

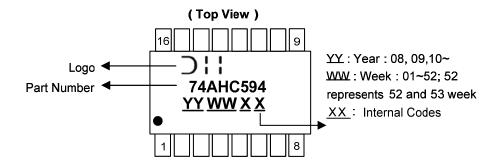
Voltage Waveform Propagation Delay Times **Inverting and Non Inverting Outputs**


Notes:

- A. Includes test lead and test apparatus capacitance.B. All pulses are supplied at pulse repetition rate ≤ 10MHz.
- C. Inputs are measured separately one transition per measurement.
- D. t_{PLH} and t_{PHL} are the same as t_{PD} .

Figure 1 Load Circuit and Voltage Waveforms

Ordering Information

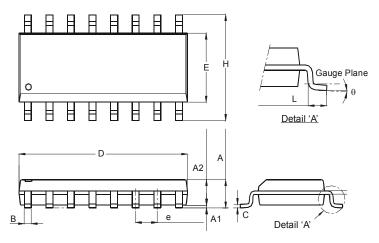


Part Number	Bookaga Cada	Dockoning	7" Tape and	Reel (Note 6)
Part Number	Package Code	Packaging	Quantity	Part Number Suffix
74AHC594S16-13	S16	SO-16	2500/Tape & Reel	-13
74AHC594T16-13	T16	TSSOP-16	2500/Tape & Reel	-13

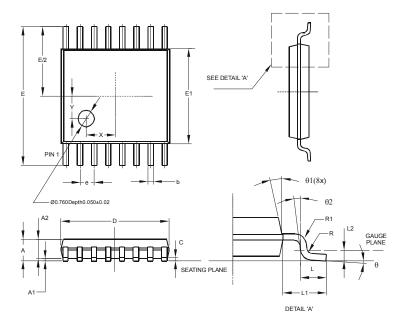
Note: 6. The taping orientation is located on our website at http://www.diodes.com/datasheets/ap02007.pdf

Marking Information

(1) SO-16, TSSOP16


Part Number	Package
74AHC594S16	SO-16
74AHC594T16	TSSOP-16

Package Outline Dimensions (All dimensions in mm.)

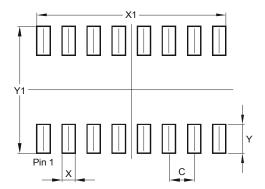

Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for latest version.

Package Type: SO-16

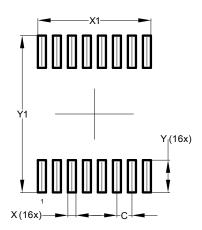
	SO-16	
Dim	Min	Max
Α	1.40	1.75
A1	0.10	0.25
A2	1.30	1.50
В	0.33	0.51
U	0.19	0.25
D	9.80	10.00
Е	3.80	4.00
е	1.27	Тур
Η	5.80	6.20
١	0.38	1.27
Θ	0°	8°
All D	imension	s in mm

Package Type: TSSOP-16

TSSOP-16				
Dim	Min	Max	Тур	
Α	-	1.08	-	
A1	0.05	0.15	-	
A2	0.80	0.93	-	
b	0.19	0.30	-	
С	0.09	0.20	-	
D	4.90	5.10	-	
Е	6.40 BSC			
E1	4.30	4.50	-	
е	0.65 BSC			
L	0.45	0.75	-	
L1	1.00 REF			
L2	0.25 BSC			
R	0.09	-	-	
R1	0.09	-	-	
Х	-	-	1.350	
Υ	-	-	1.050	
Θ	0°	8°	-	
Θ1	5°	15°	-	
Θ2	0°	-	-	
All Dimensions in mm				


Downloaded from **Arrow.com**.

Suggested Pad Layout


Please see AP02001 at http://www.diodes.com/datasheets/ap02001.pdf for the latest version.

Package Type: SO-16

Dimensions	Value (in mm)	
С	1.270	
Х	0.670	
X1	9.560	
Y	1.450	
Y1	6.400	

Package Type: TSSOP-16

Dimensions	Value (in mm)	
С	0.650	
Х	0.350	
X1	4.900	
Υ	1.400	
Y1	6.800	

Downloaded from **Arrow.com**.

June 2013 © Diodes Incorporated

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2013, Diodes Incorporated

www.diodes.com