Contents

1	Bloc	Block diagram and pins description				
2	Elec	trical specifications				
	2.1	Absolute maximum ratings				
	2.2	Thermal data				
	2.3	Electrical characteristics				
	2.4	Electrical characteristics curves11				
3	Арр	lication information				
	3.1	Voltage regulator				
	3.2	Reset				
	3.3	Early warning				
4	Pacl	Package and PCB thermal data 19				
	4.1	PowerSSO-12 thermal data 19				
	4.2	SO-8 thermal data 22				
5	Pacl	kage information				
	5.1	PowerSSO-12 package information				
	5.2	SO-8 package information				
	5.3	PowerSSO-12 packing information				
	5.4	SO-8 packing information 30				
6	Revi	sion history				

List of tables

Table 1.	Device summary
Table 2.	Pins description
Table 3.	Absolute maximum ratings
Table 4.	Thermal data
Table 5.	General
Table 6.	Reset
Table 7.	Early warning
Table 8.	PowerSSO-12 thermal parameter
Table 9.	SO-8 thermal parameter
Table 10.	PowerSSO-12 package mechanical data
Table 11.	SO-8 package mechanical data
Table 12.	Document revision history

List of figures

Figure 1.	Block diagram
Figure 2.	Configuration diagram (top view)
Figure 3.	Output voltage vs. T _i
Figure 4.	Output voltage vs. V _S
Figure 5.	Drop voltage vs. output current
Figure 6.	Current consumption vs. output current
Figure 7.	Current consumption vs. output current (at light load condition)
Figure 8.	Current consumption vs. input voltage (lo = 0.1 mA) 11
Figure 9.	Current consumption vs. input voltage (lo = 75 mA)
Figure 10.	Current limitation vs. T _i
Figure 11.	Current limitation vs. input voltage
Figure 12.	Short-circuit current vs. T _i
Figure 13.	Short-circuit current vs. input voltage
Figure 14.	V _{Rhth} vs. T _j
Figure 15.	V _{Rlth} vs. T _j
Figure 16.	V _{EWi thh} vs. T _i
Figure 17.	V _{EWi thl} vs. T _i
Figure 18.	I _{cr} vs. T _j
Figure 19.	I _{dr} vs. T _j
Figure 20.	PSRR
Figure 21.	Application schematic
Figure 22.	Stability region
Figure 23.	Maximum load variation response
Figure 24.	Reset time diagram
Figure 25.	Early warning time diagram
Figure 26.	PowerSSO-12 PC board ⁽¹⁾
Figure 27.	Rthj-amb vs PCB copper area in open box free air condition
Figure 28.	PowerSSO-12 thermal impedance junction ambient single pulse
Figure 29.	Thermal fitting model of Vreg in PowerSSO-12
Figure 30.	SO-8 PC board ⁽¹⁾
Figure 31.	Rthj-amb vs. PCB copper area in open box free air condition
Figure 32.	SO-8 thermal impedance junction ambient single pulse
Figure 33.	Thermal fitting model of V _{reg} in in SO-8
Figure 34.	PowerSSO-12 package outline
Figure 35.	SO-8 package outline
Figure 36.	PowerSSO-12 tube shipment (no suffix)
Figure 37.	PowerSSO-12 tape and reel shipment (suffix "TR")
Figure 38.	SO-8 tube shipment (no suffix)
Figure 39.	SO-8 tape and reel shipment (suffix "TR") 30

1 Block diagram and pins description

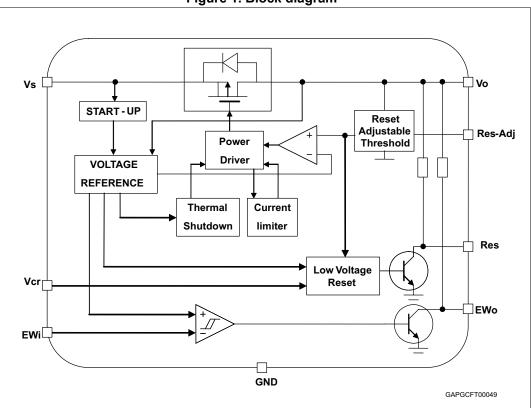
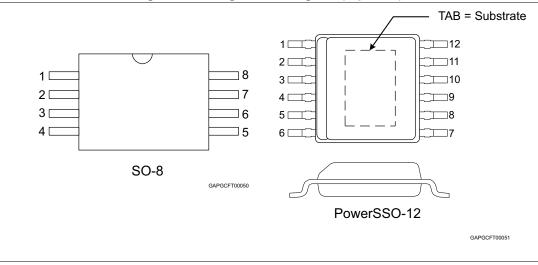



Figure 1. Block diagram

57

Pin name	Pin name PowerSSO-12 pin #		Function
R _{es_Adj}	1	8	Reset adjustable threshold. Connected to an appropriate external voltage divider, it allows to properly set the reset threshold down to 3.5 V. Connect to GND if not needed.
R _{es}	2	1	Reset output. Internally connected to V_0 through a 20 K Ω pull up resistor. This pin is pulled low when $V_0 < V_{0-th}$. Keep open if not needed.
V _{cr}	3	2	Reset delay. Connect an external capacitor between V _{cr} pin and ground to adjust the reset delay time. Keep open if not needed.
GND	4	3	Ground reference.
NC	5, 11, 8, 9	-	Not connected.
Vo	6	4	5 V regulated output. Block to GND with a ceramic capacitor ($C_0 \ge 220$ nF for regulator stability).
V _S	7	5	Supply voltage, block directly to GND on the IC with a capacitor.
EWi	10	6	Early warning input. This pin monitors the $\rm V_S$ voltage level through a resistor divider. Connect to $\rm V_S$ if not needed.
EWo	12	7	Early warning output. Internally connected to V _o through 20 K Ω pull up resistor. This pin is pulled low when EW _i is below bandgap reference voltage. Keep open if not needed.
TAB	-	-	TAB is connected to the substrate of the chip: connect to GND or leave open (see <i>Figure 2</i> for PowerSSO-12 only).

Table 2. Pins description

2 Electrical specifications

2.1 Absolute maximum ratings

Stressing the device above the rating listed in the *Table 3: Absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Value	Unit
Vsdc	DC supply voltage	-0.3 to 40	V
lsdc	Input current	internally limited	
V _{odc}	DC output voltage	-0.3 to 6	V
I _{odc}	DC output current	internally limited	
V _{od Res}	Open drain output voltage R _{es}	-0.3 to Vodc + 0.3	V
I _{od Res}	Open drain output current R _{es}	internally limited	
V _{Res_adj}	V _{Res_adj} voltage	-0.3 to Vodc + 0.3	V
V _{od EWo}	Open drain output voltage EW _o	-0.3 to Vodc + 0.3	V
I _{od EWo}	Open drain output current EW _o	internally limited	
V _{cr}	V _{cr} voltage	-0.3 to Vo + 0.3	V
V _{EWi}	Early warning input voltage	-0.3 to 40	V
Тj	Junction temperature	-40 to 150	°C
V _{ESD HBM}	ESD HBM voltage level (HBM-MIL STD 883C)	± 2	kV
VESD CDM	ESD CDM voltage level (CDM-)	± 750	V

Table 3.	Absolute	maximum	ratings
	Absolute	maximum	runigo

2.2 Thermal data

Symbol	Parameter	Value	Unit	
Symbol	Falametei	PowerSSO-12	SO-8	Omt
R _{thj-case}	Thermal resistance junction to case:	8		°K/W
R _{thj-lead}	Thermal resistance junction to lead:		40	°K/W
R _{thj-amb} ⁽¹⁾	Thermal resistance junction to ambient:	52	112	°K/W

Table 4. Thermal data

PowerSSO-12: The values quoted are for PCB 77 mm x 86 mm x 1.6 mm, FR4, double copper layer with single heatsink layer, copper thickness 70 μm, thermal vias, copper area 2 cm².
SO-8: The values quoted are for PCB 48 mm x 48 mm x 2 mm, FR4, double copper layer with single heatsink layer, copper thickness 35 μm, copper area 2 cm².

2.3 Electrical characteristics

Values specified in this section are for V_S = 5.6 V to 31 V, T_j = -40 °C to +150 °C unless otherwise stated.

Table 5. General							
Pin	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Vo	V _{o_ref}	Output voltage	V _S = 8 V to 18 V I _o = 8 mA to 150 mA	4.9	5.0	5.1	V
Vo	V _{o_ref}	Output voltage	$V_S = 5.6 V \text{ to } 31 V$ I _o = 8 mA to 150 mA	4.85	5.0	5.15	V
Vo	V _{o_ref}	Output voltage	$V_S = 5.6 V$ to 31 V $I_o = 0.1 mA$ to 8 mA	4.75	5.0	5.25	V
Vo	I _{short}	Short-circuit current	V _S = 13.5 V	0.65	0.95	1.25	А
Vo	I _{lim}	Output current capability ⁽¹⁾	V _S = 13.5 V	280	470	660	mA
V _S , Vo	V _{line}	Line regulation voltage	$V_{S} = 6 V \text{ to } 28 V$ $I_{o} = 30 \text{ mA}$	-	-	40	mV
			$V_S = 8 V$ to 18 V, $I_o = 8 mA$ to 150 mA	_	_	55	
Vo	V _{load}	Load regulation voltage	V _S = 13.5 V, T _j = 25 °C I _o = 8 mA to 150 mA	-	-	40	mV
$V_{\rm S}, V_{\rm O}$	V _{dp}	Drop voltage ⁽²⁾	l _o = 150 mA	-	-	500	mV
$V_{\rm S}, V_{\rm O}$	SVR	Ripple rejection	f _r = 100 Hz ⁽³⁾	-	48	-	dB
Vo	lo _{th_H}	Normal consumption mode output current	V _S = 8 V to 18 V	8	-	-	mA
Vo	lo _{th_L}	Very low consumption mode output current	V _S = 8 V to 18 V	-	-	1.1	mA
Vo	lo _{th_Hyst}	Output current switching threshold hysteresis	V _S = 13.5 V T _j = 25 °C	-	0.8	-	mA

Table 5. General

8/34

-								
Pin	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit	
V _S , V _o	I _{qn_1}	Current consumption $I_{qn_1} = I_{Vs} - I_{o}$	V _S = 13.5 V, I _o = 0.1 mA to 1 mA, T _j = 25 °C	_	55	80	μA	
			V _S = 13.5 V, I _o = 0.1 mA to 1 mA,	-		95		
V _S , V _o	I _{qn_150}	Current consumption $I_{qn_{150}} = I_{Vs} - I_{o}$	V _S = 13.5 V I _o = 150 mA	-	3	4.2	mA	
_	Τ _w	Thermal protection temperature	-	150	-	190	°C	
-	T _{w_hy}	Thermal protection temperature hysteresis	-	-	10	-	°C	

Table 5. General (continued)

1. Measured Output Current when the output voltage has dropped 100 mV from its nominal Value obtained at 13.5 V and I_o =75 mA.

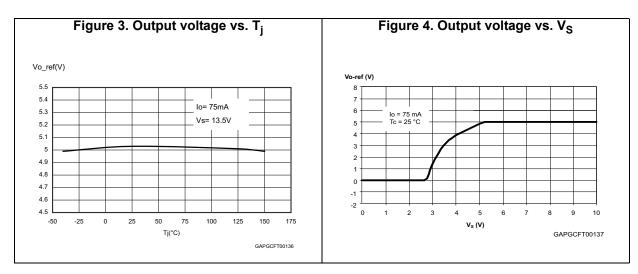
2. Vs - V_o Measured Dropout when the output voltage has dropped 100 mV from its nominal Value obtained at 13.5 V and I_o =75 mA.

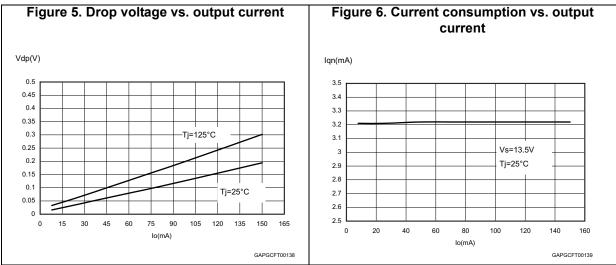
3. Guaranteed by design.

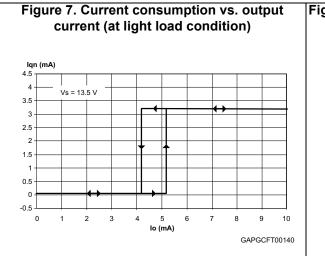
Pin	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
R _{es}	V _{res_I}	Reset output low voltage	$R_{ext} = 5 k\Omega$ $V_o > 1 V$	_	_	0.4	V
R _{es}	I _{Res_lkg}	Reset output high leakage current	VRes = 5 V	-	-	1	μA
R _{es}	R _{Res}	Pull up internal resistance	Versus V _o	10	20	40	kΩ
R _{es}	V _{o_th}	V _o out of regulation threshold	Vres_adj < 0.2 V, V _o decreasing	6	8	10	% Below V _{o_ref}
R _{es_adj}	V _{res_adj}	Reset adjustable switching threshold	-	2.35	2.5	2.65	V
R _{es_adj}	V _{Res_adjl}	Reset adjustable low voltage	-	0.4	0.9	1.3	V
R _{es_adj}	IRes_adj_lkg	Reset adjustable leakage current	Vres_adj = 2.5 V	-1	-	1	μA
V _{cr}	V _{Rlth}	Reset timing low threshold	V _S = 13.5 V	15	18	22	% V _{o_ref}
V _{cr}	V _{Rhth}	Reset timing high threshold	V _S =13.5 V	47	50	53	% V _{o_ref}
V _{cr}	I _{cr}	Charge current	V _S = 13.5 V	10	20	30	μA
V _{cr}	I _{dr}	Discharge current	V _S = 13.5 V	10	20	30	μΑ

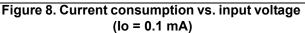
Table 6. Reset

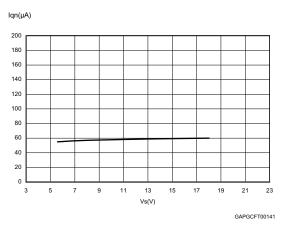
Pin	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit	
R _{es}	T _{rr}	Reset reaction time	-	-	-	2	μs	
R _{es}	T _{rd}	Reset delay time	V _S = 13.5 V; C _{tr} = 1000 pF	2	4	11	ms	

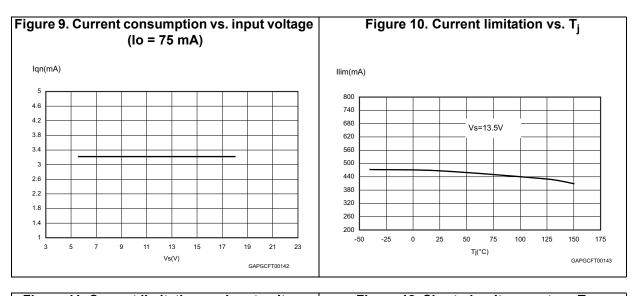

Table 6. Reset (continued)

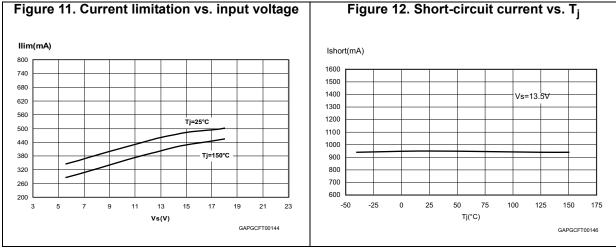

Table	7. E	Early	warning
-------	------	-------	---------

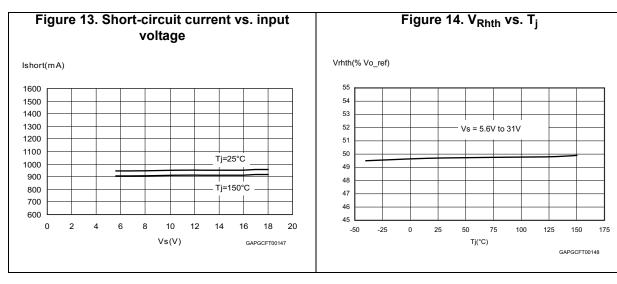

Pin	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
EWi	V _{EWi_thl}	EW input low threshold voltage	_	2.35	2.50	2.65	V
EWi	V _{EWi_thh}	EW input high threshold voltage	_	2.42	2.57	2.72	V
EWi	V _{EWi_thhyst}	EW input threshold hysteresis	_	-	70	-	mV
EWi	I _{EWi_lkg}	EW input leakage current	V _{EWi} = 2.5 V, V _S > 4 V	-1	-	1	μA
EWo	R _{EWo}	Pull up internal resistance	Versus V _o	10	20	40	kΩ
EWo	V _{EWo_lv}	EW output low voltage (with external pull up)	V _{EWi} < 2.35 V; V _S > 4 V; R _{ext} = 5 kΩ	_	_	0.4	V
EWo	I _{EWo_lkg}	EW output leakage current	V _{EWo} = 5 V	_	_	1	μA

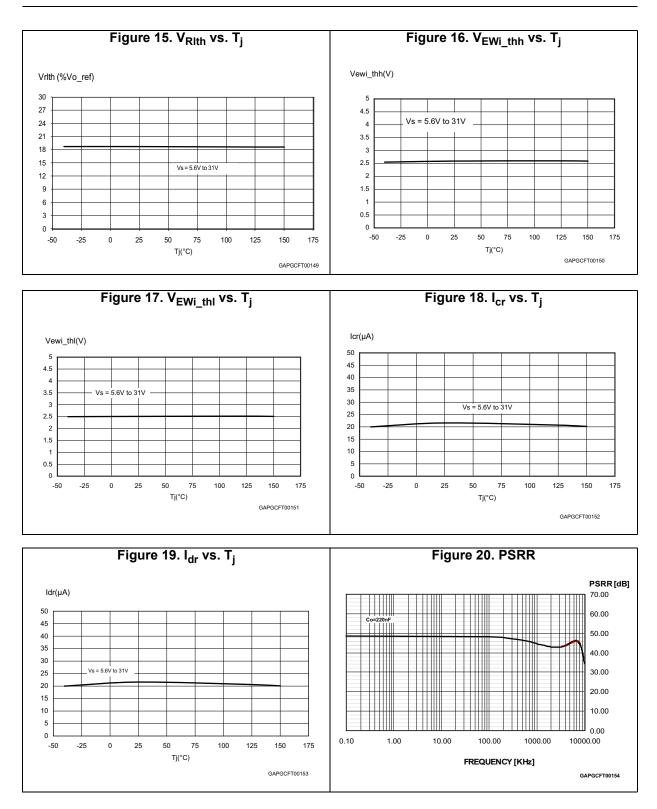



2.4 Electrical characteristics curves









12/34

57

3 Application information

3.1 Voltage regulator

The voltage regulator uses a p-channel mos transistor as a regulating element. With this structure a very low dropout voltage at current up to 150 mA is obtained. The output voltage is regulated up to input supply voltage of 40 V. The high-precision of the output voltage ($\pm 2\%$) is obtained with a pre-trimmed reference voltage. The voltage regulator automatically adapts its own quiescent current to the output current level. In light load conditions the quiescent current goes to 55 µA only (low consumption mode). This procedure features a certain hysteresis on the output current (see *Figure 7*). Short-circuit protection to GND and a thermal shutdown are provided.

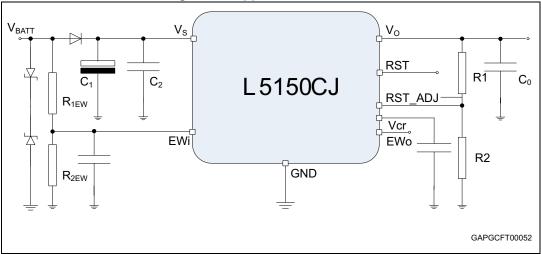
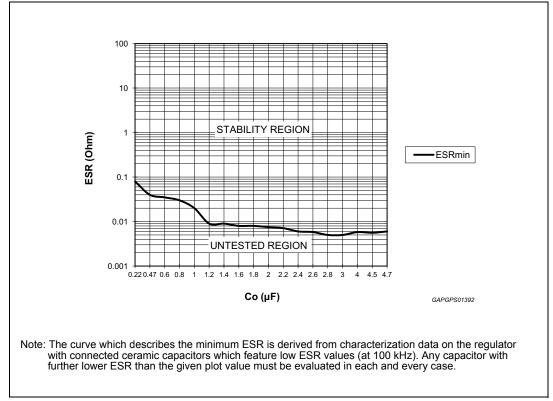
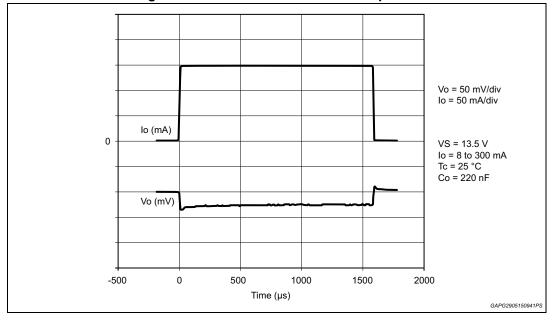


Figure 21. Application schematic


The input capacitor $C_1 \ge 100 \ \mu\text{F}$ is necessary as backup supply for negative pulses which may occur on the line. The second input capacitor $C_2 \ge 220 \ \text{nF}$ is needed when the C_1 is too distant from the V_S pin and it compensates smooth line disturbances. The C_0 ceramic capacitor, connected to the output pin, is for bypassing to GND the high-frequency noise and it guarantees stability even during sudden line and load variations. Suggested value is $C_0 = 220 \ \text{nF}$ with ESR $\ge 100 \ \text{m}\Omega$.


Stability region is reported in *Figure 22*.

3.2 Reset

The reset circuit monitors the output voltage V_o. If the output voltage becomes lower than V_{o_th} then R_{es} goes low with a delay time (t_{rr}). When the output voltage becomes higher than V_{o_th} then R_{es} goes high with a delay time t_{rd}. This delay is obtained by 32 periods of oscillator. The oscillator period is given by:

Equation 1

$$T_{osc} = [(V_{Rhth} - V_{Rlth}) \times C_{tr}] / I_{cr} + [(V_{Rhth} - V_{Rlth}) \times C_{tr}] / I_{dr}$$

where:

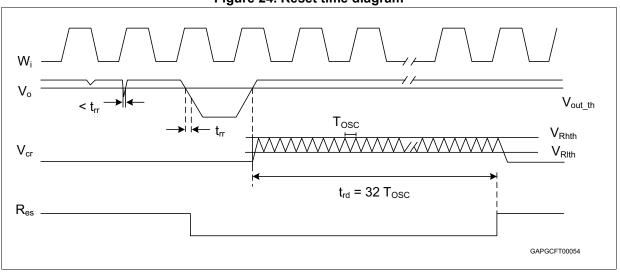
 I_{cr} = 20 µA is an internally generated charge current,

 I_{dr} = 20 µA is an internally generated discharge current,

 V_{Rhth} = 2.5 V (typ) and V_{Rlth} = 0.9 V (typ) are two voltage thresholds,

 $\mathbf{C}_{\mathbf{tr}}$ is an external capacitor put between V_{cr} pin and GND.

Reset pulse delay T_{rd} is given by:

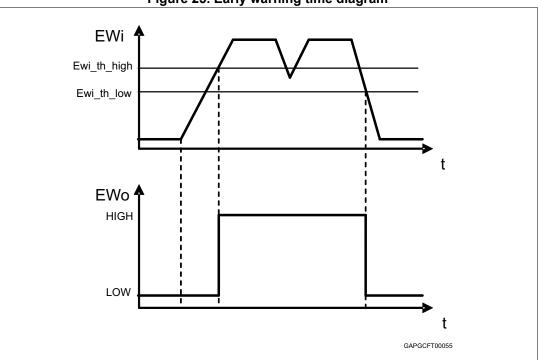

Equation 2

The Output Voltage Reset threshold can be adjusted via an external voltage divider $R_1 + R_2$ (R_1 connected between R_{es_Adj} and V_0 , R_2 connected between R_{es_Adj} and GND) according to the following formula:

Equation 3

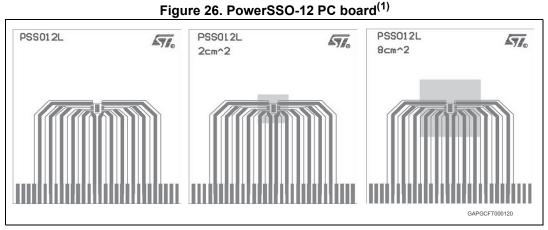
$$V_{thre} = [(R_1 + R_2) / R_2] * V_{Res_{adj}}$$

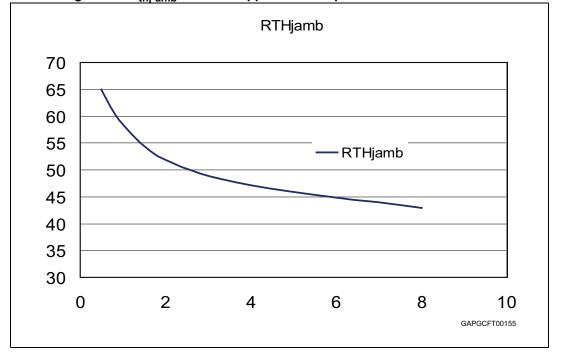
The Output Voltage Reset threshold can be decreased down to 3.5 V. If it is needed to maintain it to its default value (8% below V_{0_ref} typical), it is enough to connect the R_{es_Adj} pin directly to GND.

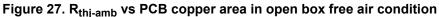


3.3 Early warning

This circuit compares the EW_i input signal with the internal voltage reference (typically 2.5 V). The use of an external voltage divider makes the comparator very flexible in the application. This function can be used to supervise the supply input voltage either before or after the protection diode and to give additional information to the microprocessor such as low voltage warnings.

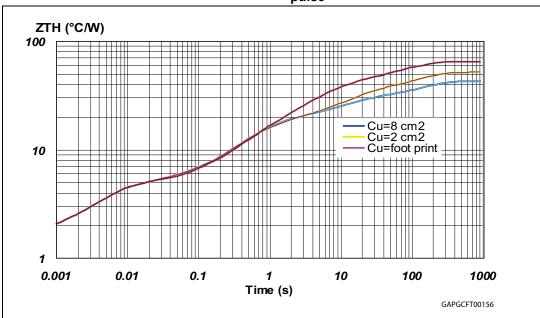
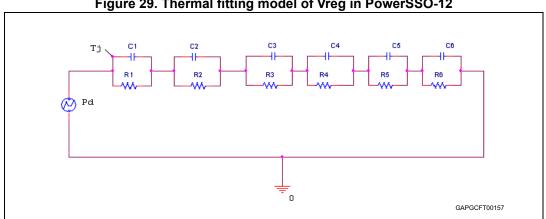


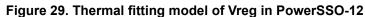



4 Package and PCB thermal data

4.1 PowerSSO-12 thermal data

 Layout condition of R_{th} and Z_{th} measurements (PCB: double layer, thermal vias, FR4 area = 77 mm x 86 mm, PCB thickness = 1.6 mm, Cu thickness = 70 μm (front and back side), thermal vias separation 1.2 mm, thermal via diameter 0.3 mm +/- 0.08 mm, Cu thickness on vias 25 μm, footprint dimension 4.1 mm x 6.5 mm).


Figure 28. PowerSSO-12 thermal impedance junction ambient single pulse

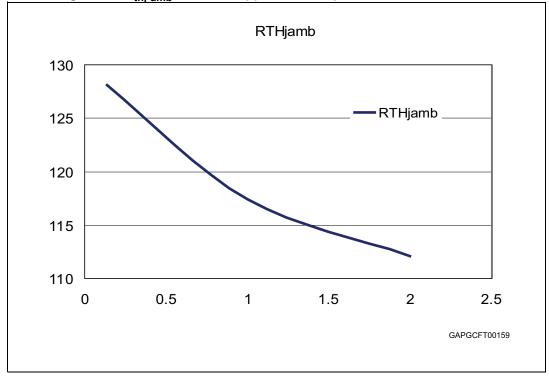
Equation 4: pulse calculation formula

$$Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta)$$

where $\delta = t_P/T$

Area (cm ²)	Footprint	2	8
R1 (°K/W)	1.53		
R2 (°K/W)	3.21		
R3 (°K/W)	5.2		
R4 (°K/W)	7	7	8
R5 (°K/W)	22	15	10
R6 (°K/W)	26	20	15
C1 (W.s/°K)	0.00004		
C2 (W.s/°K)	0.0016		
C3 (W.s/°K)	0.08		
C4 (W.s/°K)	0.2	0.1	0.1
C5 (W.s/°K)	0.27	0.8	1
C6 (W.s/°K)	3	6	9

Table 8. PowerSSO-12 thermal parameter



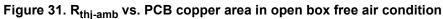

4.2 SO-8 thermal data

Figure 30. SO-8 PC board⁽¹⁾

 Layout condition of R_{th} and Z_{th} measurements (PCB: double layer, thermal vias, FR4 area = 48 mm x 48 mm, PCB thickness = 2 mm, Cu thickness = 35 μm (front and back side), Cu thickness on vias 25 μm, Footprint dimension 4.1 mm x 6.5 mm).

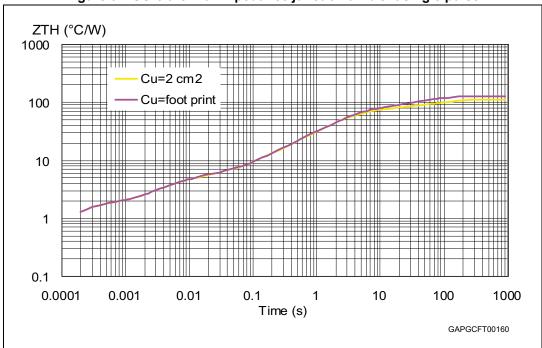
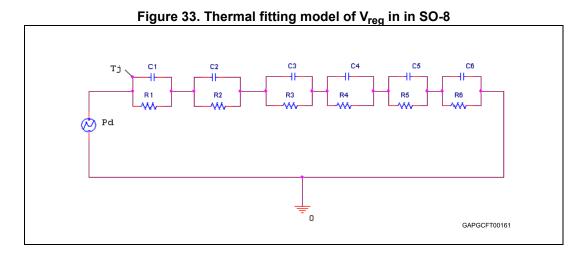



Figure 32. SO-8 thermal impedance junction ambient single pulse

Equation 5: pulse calculation formula

$$Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp}(1 - \delta)$$

where $\delta = t_P/T$

Area (cm ²)	Footprint	2
R1 (°K/W)	1.53	
R2 (°K/W)	3.21	
R3 (°K/W)	5.4	
R4 (°K/W)	32	
R5 (°K/W)	34	
R6 (°K/W)	52	36
C1 (W.s/°K)	0.00004	
C2 (W.s/°K)	0.0016	
C3 (W.s/°K)	0.04	
C4 (W.s/°K)	0.05	
C5 (W.s/°K)	0.15	
C6 (W.s/°K)	1	2.5

Table 9. SO-8 thermal parameter

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

5.1 PowerSSO-12 package information

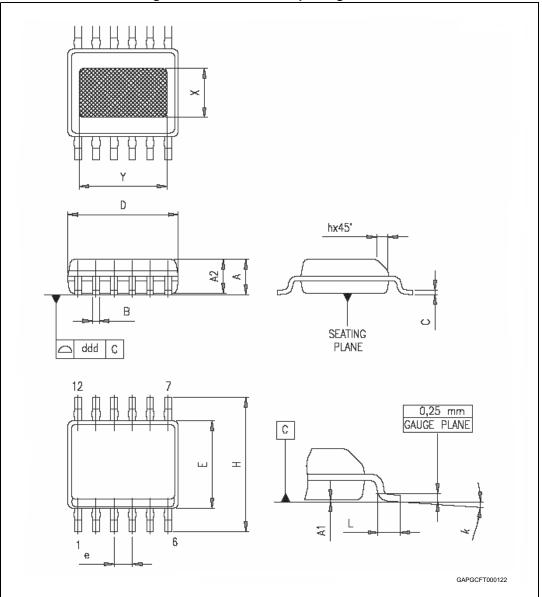


Figure 34. PowerSSO-12 package outline

	Millimeters			
Symbol	Min.	Тур.	Max.	
А	1.250		1.620	
A1	0.000		0.100	
A2	1.100		1.650	
В	0.230		0.410	
С	0.190		0.250	
D	4.800		5.000	
E	3.800		4.000	
е		0.800		
н	5.800		6.200	
h	0.250		0.500	
L	0.400		1.270	
k	0°		8°	
Х	1.900		2.500	
Y	3.600		4.200	
ddd			0.100	

Table 10. PowerSSO-12 package mechanical data

26/34

5.2 SO-8 package information

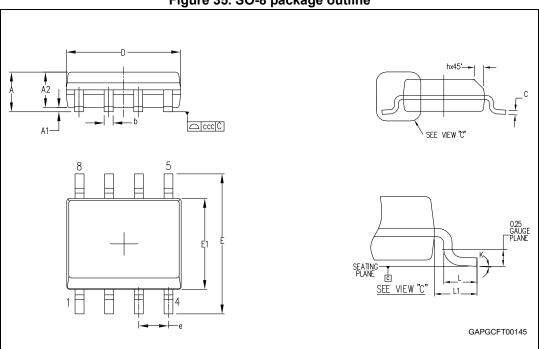
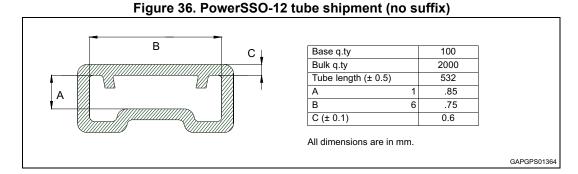


Figure 35. SO-8 package outline

Table 11. 50-o package mechanical data					
Symbol	Millimeters				
Symbol	Min.	Тур.	Max.		
A			1.75		
A1	0.10		0.25		
A2	1.25				
b	0.28		0.48		
С	0.17		0.23		
D ⁽¹⁾	4.80	4.90	5.00		
E	5.80	6.00	6.20		
E1 ⁽²⁾	3.80	3.90	4.00		
е		1.27			
h	0.25		0.50		
L	0.40		1.27		
L1		1.04			
k	0°		8°		
ссс			0.10		


Table 11	SO-8	package	mechanical	data
		package	meenamear	uutu

 Dimensions D does not include mold flash, protrusions or gate burrs. Mold flash, potrusions or gate burrs shall not exceed 0.15 mm in total (both side).

2. Dimension "E1" does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per side.

5.3 PowerSSO-12 packing information

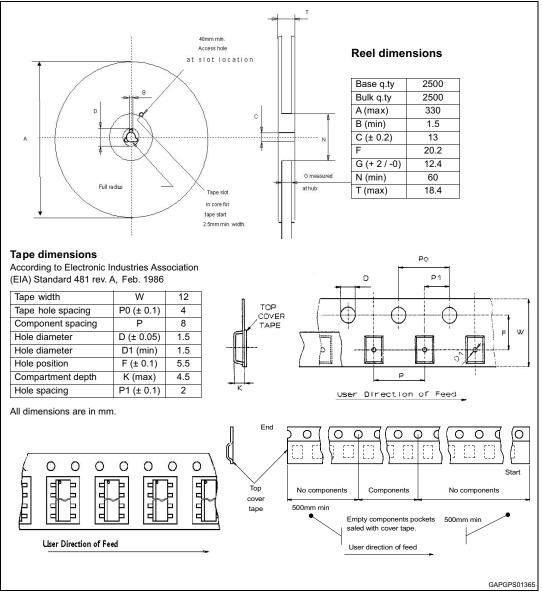
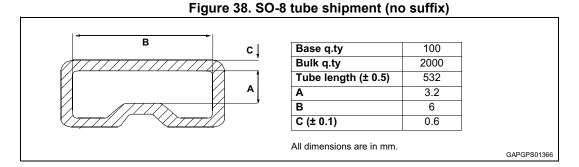
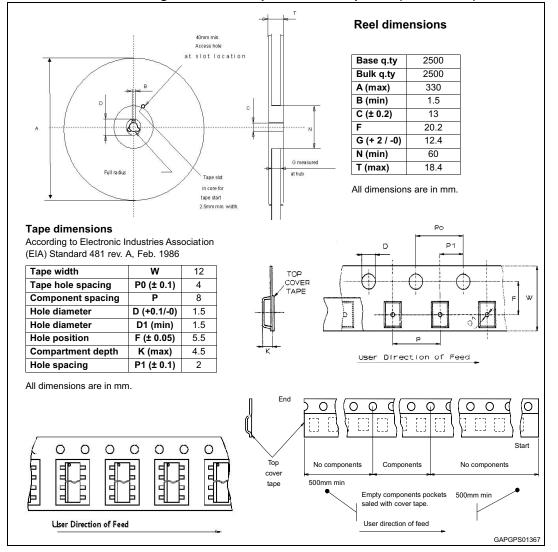




Figure 37. PowerSSO-12 tape and reel shipment (suffix "TR")

5.4 SO-8 packing information

Figure 39. SO-8 tape and reel shipment (suffix "TR")

30/34

6 Revision history

Date	Revision	Changes
09-Aug-2007	1	Initial release.
06-Mar-2008	2	Updated <i>Table 5.: General</i> : - changed V _{o_ref} , V _{line} , V _{load} test conditions - added notes to Ilim and Vdp parameters - added I _{oth_H} , I _{oth_L} , I _{oth} parameters. Updated <i>Table 6.: Reset</i> : - added V _{res_adj} parameter - changed V _{Rlth} values (min./ typ./ max.) from 17/20/23 to 20/23/26 (% V _{o_ref}). Modified <i>Section 3.2: Reset</i> .
09-May-2008	3	Updated <i>Table 5.: General</i> : - changed I _{lim} values (Min./Typ./Max.) from 0.7/1/1.30 A to 280/470/660 mA - V _{o_ref} parameter : updated I _o test condition OId -> I _o = 0.1 mA to 10 mA New -> I _o = 0.1 mA to 8 mA.
13-Oct-2008	4	Updated Table 5.: General : - Vload parameter: updated I_0 test condition Old -> $I_0 = 5$ mA to 150 mA New -> $I_0 = 8$ mA to 150 mA.
23-Oct-2008	5	Added S0-8 package option.

Table 12. Document revision history (continued)				
Date	Revision	Changes		
16-Apr-2009	6	Updated corporate template from V2 to V3 Updated Figure 2: Configuration diagram (top view) Table 2: Pins description - Added new row Table 3: Absolute maximum ratings - V _{En} : deleted row Table 4: Thermal data - R _{thj-amb} : changed value - Added new row - Updated TableFootnote Table 5: General - V _{load} : changed max value for Vs = 8 V to 18 V, added new row - Updated TableFootnote Table 6: Reset - V _{Rith} : changed min/tp/max value - V _{Ruth} : changed with V _{Ruth} , changed Parameter Table 7: Early warning - Updated symbols Added Figure 3: Output voltage vs. Tj Added Figure 6: Current consumption vs. output current Added Figure 7: Current consumption vs. output current Added Figure 8: Current consumption vs. input voltage (lo = 0.1 mA) Added Figure 10: Current limitation vs. input voltage (lo = 75 mA) Added Figure 13: Short-circuit current vs. input voltage Added Figure 14: Current limitation vs. input voltage Added Figure 15: VRIth vs. Tj Added Figure 16: VRIth vs. Tj Added Figure 17: VEW_thl vs. Tj Added Figure 18: lcr vs. Tj Added Figure 19: dr vs. Tj Added Figure 19: dr vs. Tj Added Figure 19: dr vs. Tj Added Figure 19: ldr vs. Tj Added Figure 11: Application schematic - Added Figure 21: Application schematic - Added Figure 23: Maximum load variation response Section 3.1: Voltage ragulator - Updated text - Added Section 4: Package and PCB thermal data Changed Section 5: FECOPACK®		

32/34

Date	Revision	Changes
09-Jun-2009	7	Changed document title <i>Table 5: General</i> – I _{oth_H} , I _{oth_L} : added test condition Updated <i>Figure 4: Output voltage vs. VS</i> <i>Section 3.3: Early warning</i> – changed internal voltage reference typical value from 1.23 V to 2.5 V Updated <i>Figure 28: PowerSSO-12 thermal impedance junction</i> <i>ambient single pulse</i> Updated <i>Figure 32: SO-8 thermal impedance junction ambient single</i> <i>pulse</i>
04-Dec-2009	8	Updated features list. Updated <i>Table 2: Pins description</i> . Updated <i>Section 3.1: Voltage regulator</i> . Corrected <i>Equation 3</i> on <i>Section 3.2: Reset</i> .
26-Mar-2010	9	Updated <i>Table 5: General</i> : $- I_{qn_1}, I_{qn_{150}}$: removed test condition $E_n = high$.
12-Apr-2010	10	<i>Table 4: Thermal data:</i> – R _{thj-amb} : updated PowerSSO-12 value
14-Mar-2011	11	<i>Table 4: Thermal data:</i> – R _{thj-amb} : updated PowerSSO-12 value – R _{thj-lead} : updated SO-8 value
30-Jan-2012	12	Updated Figure 22: Stability region on page 15.
07-Feb-2012	13	Modified Figure 22: Stability region on page 15.
17-Apr-2012	14	<i>Table 6: Reset:</i> – T _{rd} : updated maximum value
19-Sep-2013	15	Updated disclaimer.
03-Jun-2015	16	Changed in <i>Table 5</i> the typical value of SVR from 60 dB to 48 dB.
25-Sep-2018	17	Updated title and added the feature "AEC-Q100 qualified" in cover page with automotive logo.

Table 12. Document revision history (continued)

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

