Contents STGIPS20C60-H

Contents

1	Inter	rnal block diagram and pin configuration	. 3
2	Elec	etrical ratings	. 5
	2.1	Absolute maximum ratings	. 5
	2.2	Thermal data	. 6
3	Elec	etrical characteristics	. 7
	3.1	Control part	. 9
	3.2	Waveform definitions	.11
4	Sma	art shutdown function	12
5	Арр	lication information	14
	5.1	Recommendations	15
6	Pacl	kage information	16
	6.1	SDIP-25L package information	16
	6.2	Packing information	18
7	Revi	ision history	19

1 Internal block diagram and pin configuration

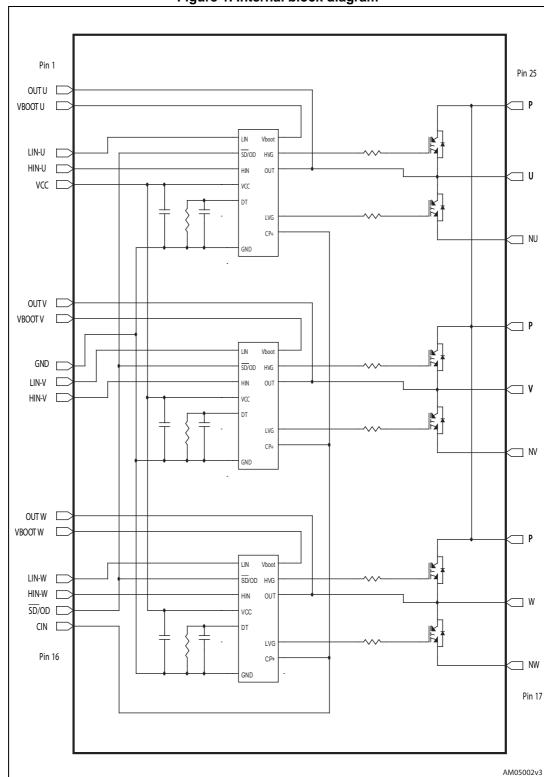
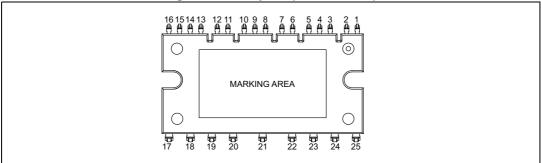


Figure 1. Internal block diagram

5/


DocID024483 Rev 4

3/20

Table 2. Pin description

Pin n°	Symbol	Description
1	OUT _U	High-side reference output for U phase
2	V _{bootU}	Bootstrap voltage for U phase
3	LIN _U	Low-side logic input for U phase
4	HIN _U	High-side logic input for U phase
5	V _{CC}	Low voltage power supply
6	OUT _V	High-side reference output for V phase
7	V _{boot V}	Bootstrap voltage for V phase
8	GND	Ground
9	LIN _V	Low-side logic input for V phase
10	HIN_V	High-side logic input for V phase
11	OUT _W	High-side reference output for W phase
12	V _{boot W}	Bootstrap voltage for W phase
13	LIN _W	Low-side logic input for W phase
14	HIN _W	High-side logic input for W phase
15	SD / OD	Shutdown logic input (active low) / open-drain (comparator output)
16	CIN	Comparator input
17	N _W	Negative DC input for W phase
18	W	W phase output
19	Р	Positive DC input
20	N_V	Negative DC input for V phase
21	V	V phase output
22	Р	Positive DC input
23	N _U	Negative DC input for U phase
24	U	U phase output
25	Р	Positive DC input

Figure 2. Pin layout (bottom view)

STGIPS20C60-H Electrical ratings

2 Electrical ratings

2.1 Absolute maximum ratings

Table 3. Inverter part

Symbol	Parameter	Value	Unit
V _{PN}	Supply voltage applied between P - N_U , N_V , N_W	450	V
V _{PN(surge)}	Supply voltage (surge) applied between P - N_U , N_V , N_W	500	V
V _{CES}	Each IGBT collector emitter voltage (V _{IN} ⁽¹⁾ = 0)	600	V
± I _C	Each IGBT continuous collector current at T _C = 25°C	20	Α
± I _{CP} ⁽²⁾	Each IGBT pulsed collector current	40	Α
P _{TOT}	Each IGBT total dissipation at T _C = 25°C	46	W
t _{scw}	Short circuit withstand time, $V_{CE} = 0.5 V_{(BR)CES}$ $T_J = 125 ^{\circ}C$, $V_{CC} = V_{boot} = 15 \text{V}$, $V_{IN} ^{(1)} = 0 - 5 \text{V}$	5	μs

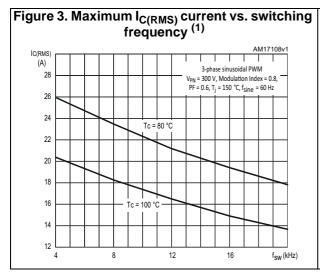
^{1.} Applied between HIN_i , LIN_i and GND for i = U, V, W

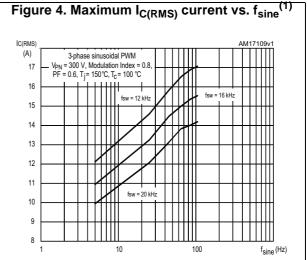
Table 4. Control part

Symbol	Parameter	Value	Unit
V _{OUT}	Output voltage applied between OUT _{U,} OUT _{V,} OUT _W - GND	V_{boot} - 21 to V_{boot} + 0.3	V
V _{CC}	Low voltage power supply	- 0.3 to +21	V
V _{CIN}	Comparator input voltage	- 0.3 to V _{CC} +0.3	V
V _{boot}	Bootstrap voltage applied between $V_{boot\ i}$ - OUT _i for i = U, V, W	- 0.3 to 620	V
V _{IN}	Logic input voltage applied between HIN, LIN and GND	- 0.3 to 15	V
V _{SD/OD}	Open drain voltage	- 0.3 to 15	V
dV _{OUT} /dt	Allowed output slew rate	50	V/ns

Table 5. Total system

Symbol	Parameter	Value	Unit
V _{ISO}	Isolation withstand voltage applied between each pin and heatsink plate (AC voltage, t = 60 sec.)	2500	V
T _j	Power chips operating junction temperature	- 40 to 150	°C
T _C	Module case operation temperature	- 40 to 125	°C


^{2.} Pulse width limited by max junction temperature


Electrical ratings STGIPS20C60-H

2.2 Thermal data

Table 6. Thermal data

Symbol Parameter		Value	Unit
R _{thJC}	Thermal resistance junction-case single IGBT	2.7	°C/W
	Thermal resistance junction-case single diode	5	°C/W

1. Simulated curves refer to typical IGBT parameters and maximum $\rm \textit{R}_{thj\text{-}c.}$

577

3 Electrical characteristics

 $T_J = 25$ °C unless otherwise specified.

Table 7. Inverter part

Symbol	Doromotor	Test conditions	Value			Unit
Symbol	Parameter	rest conditions	Min.	Тур.	Max.	Unit
.,	Collector-emitter	$V_{CC} = V_{boot} = 15 \text{ V}, V_{IN}^{(1)} = 0 \div 5 \text{ V},$ $I_{C} = 20 \text{ A}$	-	1.6	2	V
V _{CE(sat)}	saturation voltage	$V_{CC} = V_{boot} = 15 \text{ V}, V_{IN}^{(1)} = 0 \div 5 \text{ V},$ $I_{C} = 20 \text{ A}, T_{J} = 125 \text{ °C}$	-	1.7		V
I _{CES}	Collector-cut off current (V _{IN} ⁽¹⁾ = 0 "logic state")	V _{CE} = 550 V, V _{CC} = V _{Boot} = 15 V	-		100	μА
V _F	Diode forward voltage	$V_{IN}^{(1)} = 0$ "logic state", $I_C = 20 \text{ A}$	-	1.9	2.2	V
Inductive	load switching time and	energy				
t _{on}	Turn-on time		-	390	-	
t _{c(on)}	Crossover time (on)	V _{PN} = 300 V,	-	170	-	
t _{off}	Turn-off time	$V_{CC} = V_{boot} = 15 \text{ V},$	-	970	-	ns
t _{c(off)}	Crossover time (off)	$V_{IN}^{(1)} = 0 \div 5 V,$	-	150	-	
t _{rr}	Reverse recovery time	$I_C = 20 \text{ A}$	-	284	-	
E _{on}	Turn-on switching losses	(see <i>Figure 5</i>)	-	520	-	
E _{off}	Turn-off switching losses		-	460	-	μJ

^{1.} Applied between HIN_i , LIN_i and GND for i = U, V, W.

Note:

 $t_{\rm ON}$ and $t_{\rm OFF}$ include the propagation delay time of the internal drive. $t_{\rm C(ON)}$ and $t_{\rm C(OFF)}$ are the switching time of IGBT itself under the internally given gate driving condition.

Electrical characteristics STGIPS20C60-H

INPUT воот BUS Lin VBOOT>VCC /SD HVG RSD Hin OUT Vcc DT LVG VCE GND CP+ AM17138v1

Figure 5. Switching time test circuit

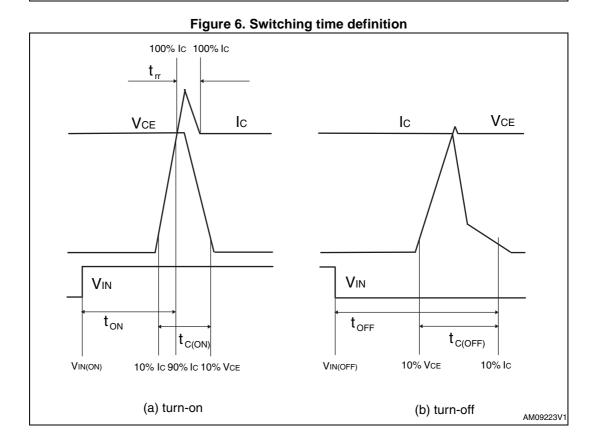


Figure 4 "Switching time definition" refers to HIN, LIN inputs (active high).

577

8/20

3.1 Control part

Table 8. Low voltage power supply ($V_{CC} = 15 \text{ V}$ unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC_hys}	V _{CC} UV hysteresis		1.2	1.5	1.8	V
V _{CC_thON}	V _{CC} UV turn ON threshold		11.5	12	12.5	V
V _{CC_thOFF}	V _{CC} UV turn OFF threshold		10	10.5	11	V
I _{qccu}	Undervoltage quiescent supply current	$\begin{aligned} & \frac{V_{CC}}{SD/OD} = 10 \text{ V} \\ & \frac{SD}{OD} = 5 \text{ V}; \text{ LIN} = \text{HIN} = 0, \\ & C_{IN} = 0 \end{aligned}$			450	μΑ
I _{qcc}	Quiescent current	$V_{CC} = 15 \text{ V}$ $\overline{SD}/OD = 5 \text{ V}; \text{ LIN} = \text{HIN} = 0,$ $C_{IN} = 0$			3.5	mA
V _{ref}	Internal comparator (CIN) reference voltage		0.5	0.54	0.58	V

Table 9. Bootstrapped voltage ($V_{CC} = 15 \text{ V}$ unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{BS_hys}	V _{BS} UV hysteresis		1.2	1.5	1.8	V
V _{BS_thON}	V _{BS} UV turn ON threshold		11.1	11.5	12.1	V
V _{BS_thOFF}	V _{BS} UV turn OFF threshold		9.8	10	10.6	V
I _{QBSU}	Undervoltage V _{BS} quiescent current	$\begin{aligned} & \frac{V_{BS} < 9 \text{ V}}{\text{SD/OD} = 5 \text{ V; LIN} = 0} \\ & \text{HIN} = 5 \text{ V; } C_{IN} = 0 \end{aligned}$		70	110	μΑ
I _{QBS}	V _{BS} quiescent current	$V_{BS} = 15 \text{ V}$ $\overline{SD}/OD = 5 \text{ V}; \text{ LIN} = 0$ $HIN = 5 \text{ V}; C_{IN} = 0$		200	300	μΑ
R _{DS(on)}	Bootstrap driver on resistance	LIN= 5 V; HIN= 0 V		120		Ω

Table 10. Logic inputs (V_{CC} = 15 V unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{il}	Low level logic threshold voltage		0.8		1.1	V
V _{ih}	High level logic threshold voltage		1.9		2.25	V
I _{HINh}	HIN logic "1" input bias current	HIN = 15 V	20	40	100	μΑ
I _{HINI}	HIN logic "0" input bias current	HIN = 0 V			1	μΑ
I _{LINh}	LIN logic "1" input bias current	LIN = 15 V	20	40	100	μΑ
I _{LINI}	LIN logic "0" input bias current	LIN = 0V			1	μΑ
I _{SDh}	SD logic "0" input bias current	SD = 15 V	30	120	300	μΑ
I _{SDI}	SD logic "1" input bias current	SD = 0 V			3	μΑ
Dt	Dead time	see Figure 7 and Table 13		1.2		μs

57/

DocID024483 Rev 4

9/20

Electrical characteristics STGIPS20C60-H

Table 11. Sense comparator characteristics ($V_{CC} = 15 \text{ V}$ unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{ib}	Input bias current	V _{CIN} = 1 V	-		3	μΑ
V _{ol}	Open-drain low-level output voltage	I _{od} = 3 mA	-		0.5	V
t _{d_comp}	Comparator delay	$\overline{\text{SD}}/\text{OD}$ pulled to 5 V through 100 k Ω resistor	-	90	130	ns
SR	Slew rate	$C_L = 180 \text{ pF}; R_{pu} = 5 \text{ k}\Omega$	-	60		V/µsec
t _{sd}	Shut down to high / low side driver propagation delay	$V_{OUT} = 0$, $V_{boot} = V_{CC}$, $V_{IN} = 0$ to 3.3 V	50	125	200	
t _{isd}	Comparator triggering to high / low side driver turn-off propagation delay Measured applying a voltage step from 0 V to 3.3 V to pin 50 CIN		250	ns		

Table 12. Truth table

Condition	Logic input (V _I)			Output		
Condition	SD/OD	LIN	HIN	LVG	HVG	
Shutdown enable half-bridge tri-state	L	Х	Х	L	L	
Interlocking half-bridge tri-state	Н	Н	Н	L	L	
0 "logic state" half-bridge tri-state	Н	L	L	L	L	
1 "logic state" low side direct driving	Н	Н	L	Н	L	
1 "logic state" high side direct driving	Н	L	Н	L	Н	

Note: X: don't care

3.2 Waveform definitions

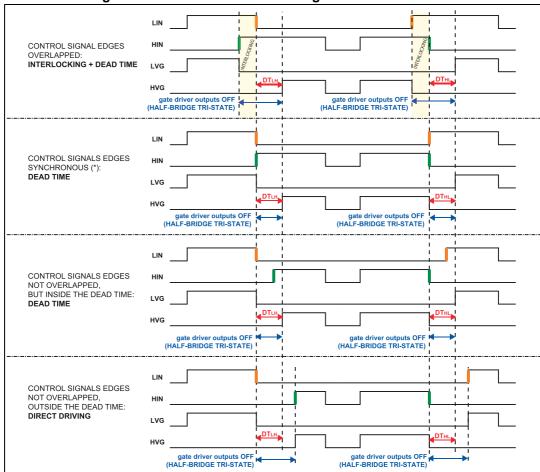


Figure 7. Dead time and interlocking waveforms definition

4 Smart shutdown function

The STGIPS20C60-H integrates a comparator for fault sensing purposes. The comparator has an internal voltage reference V_{ref} connected to the inverting input, while the noninverting input, available on pin (C_{IN}) , can be connected to an external shunt resistor in order to implement a simple over-current protection function. When the comparator triggers, the device is set in shutdown state and both its outputs are set to low-level leading the halfbridge in tri-state. In the common overcurrent protection architectures the comparator output is usually connected to the shutdown input through a RC network, in order to provide a mono-stable circuit, which implements a protection time that follows the fault condition. Our smart shutdown architecture allows to immediately turn-off the output gate driver in case of overcurrent, the fault signal has a preferential path which directly switches off the outputs. The time delay between the fault and the outputs turn-off is no more dependent on the RC values of the external network connected to the shutdown pin. At the same time the DMOS connected to the open-drain output (pin SD/OD) is turned on by the internal logic which holds it on until the shutdown voltage is lower than the logic input lower threshold (V_{ii}). Finally the smart shutdown function provides the possibility to increase the real disable time without increasing the constant time of the external RC network.

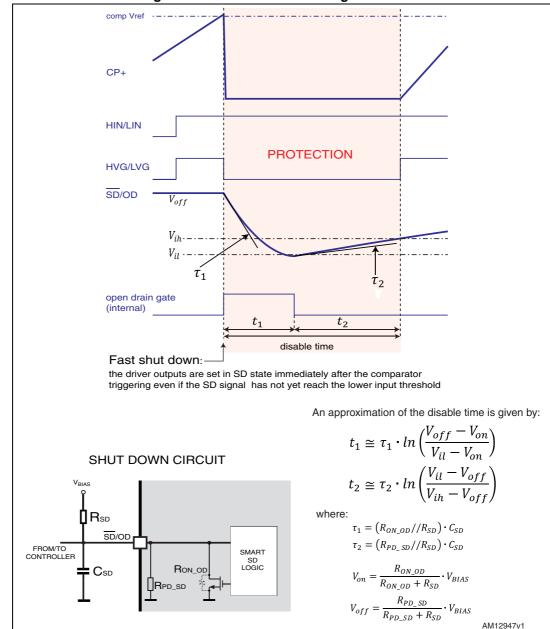


Figure 8. Smart shutdown timing waveforms

Please refer to Table 11 for internal propagation delay time details.

5 Application information

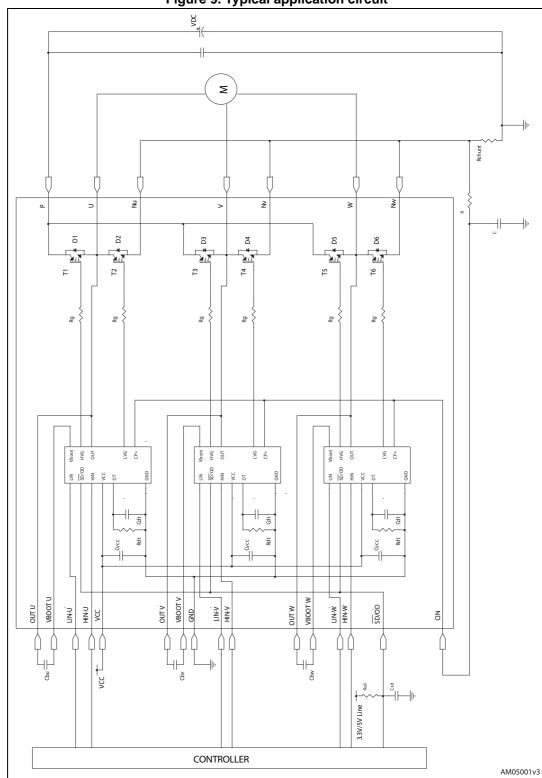


Figure 9. Typical application circuit

57

5.1 Recommendations

- Input signals HIN, LIN are active high logic. A 375 kΩ (typ.) pull down resistor is built-in for each input. If an external RC filter is used, for noise immunity, pay attention to the variation of the input signal level.
- To prevent the input signals oscillation, the wiring of each input should be as short as possible.
- By integrating an application specific type HVIC inside the module, direct coupling to MCU terminals without any opto-coupler is possible.
- Each capacitor should be located as nearby the pins of IPM as possible.
- Low inductance shunt resistors should be used for phase leg current sensing.
- Electrolytic bus capacitors should be mounted as close to the module bus terminals as
 possible. Additional high frequency ceramic capacitor mounted close to the module pins
 will further improve performance.
- The SD/OD signal should be pulled up to 5 V / 3.3 V with an external resistor (see Section 4: Smart shutdown function for detailed info).

Table 13. Recommended operating conditions

Symbol	Parameter	Conditions	Value			Unit
		Conditions	Min.	Тур.	Max.	Oiiit
V_{PN}	Supply Voltage	Applied between P-Nu,Nv,Nw		300	400	V
V _{CC}	Control supply voltage	Applied between V _{CC} -GND	13.5	15	18	V
V _{BS}	High side bias voltage	Applied between V _{BOOTi} -OUT _i for i=U,V,W	13		18	V
t _{dead}	Blanking time to prevent Arm-short	For each input signal	1.5			μs
f _{PWM}	PWM input signal	-40°C < T _c < 100°C -40°C < T _j < 125°C			20	kHz
T _C	Case operation temperature				100	°C

Note: For further details refer to AN3338.

Package information STGIPS20C60-H

Package information 6

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

Please refer to dedicated technical note TN0107 for mounting instructions.

SDIP-25L package information 6.1

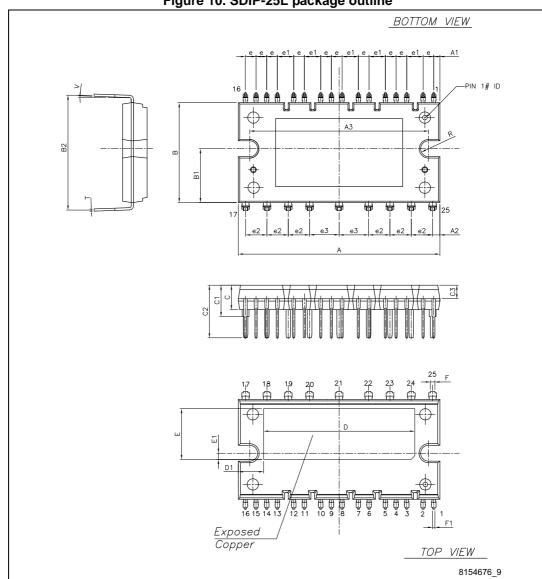


Figure 10. SDIP-25L package outline

Table 14. SDIP-25L mechanical data

Dim	mm				
Dim.	Min.	Тур.	Max.		
А	43.90	44.40	44.90		
A1	1.15	1.35	1.55		
A2	1.40	1.60	1.80		
A3	38.90	39.40	39.90		
В	21.50	22.00	22.50		
B1	11.25	11.85	12.45		
B2	24.83	25.23	25.63		
С	5.00	5.40	6.00		
C1	6.50	7.00	7.50		
C2	11.20	11.70	12.20		
C3	2.90	3.00	3.10		
е	2.15	2.35	2.55		
e1	3.40	3.60	3.80		
e2	4.50	4.70	4.90		
e3	6.30	6.50	6.70		
D		33.30			
D1		5.55			
E		11.20			
E1		1.40			
F	0.85	1.00	1.15		
F1	0.35	0.50	0.65		
R	1.55	1.75	1.95		
Т	0.45	0.55	0.65		
V	0°		6°		

Package information STGIPS20C60-H

6.2 Packing information

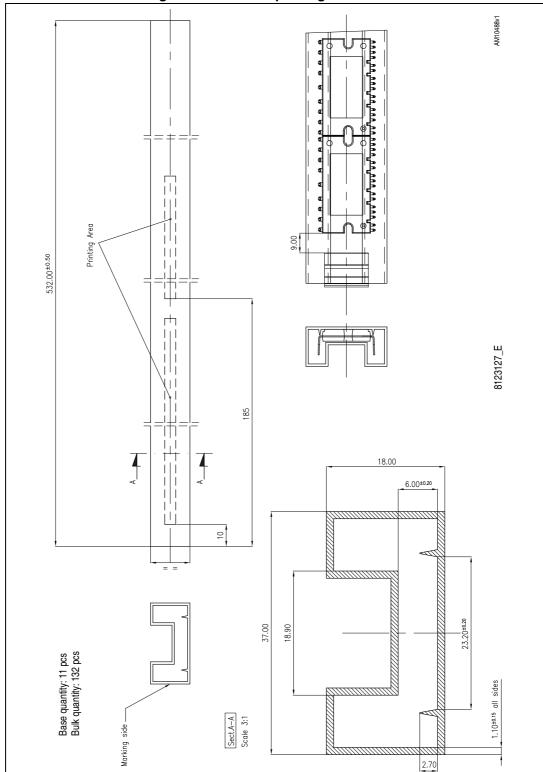


Figure 11. SDIP-25L packing information

STGIPS20C60-H Revision history

7 Revision history

Table 15. Document revision history

Date Revision		Changes	
09-Apr-2013	1	Initial release	
08-Jul-2013	2	Updated V_F typ value in <i>Table 7: Inverter part</i> and Dt value in <i>Table 10: Logic inputs (VCC = 15 V unless otherwise specified).</i>	
14-May-2014	3	Document status promoted from preliminary to production data. Updated Table 3: Inverter part, Table 6: Thermal data, Table 7: Inverter part and Section 6.2: Packing information. Minor text changes.	
10-Apr-2015	4	Minor text edits throughout document Updated Figure 2: Pin layout (bottom view) Updated Section 6: Package information	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

57