
Introduction STA517B

1 Introduction

Figure 1. Application circuit (dual BTL)

577

STA517B Pin description

2 Pin description

Figure 2. Pin out

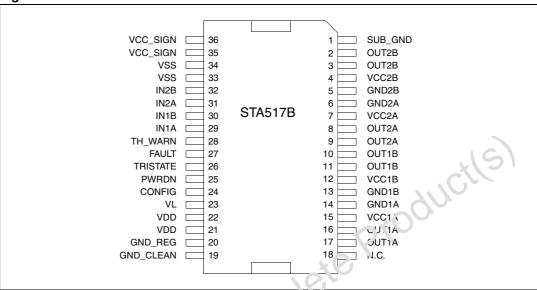


Table 2. Pin function

	Pin	Name	Туре	Description
	1	GND_SUB	PWR	Substrate ground
	2, 3	OUT2B	05	Output half bridge 2B
	4	VCC2B	FWR	Positive supply
	5	GND2F	PWR	Negative supply
	6	GND34	PWR	Negative supply
	7	VCC2A	PWR	Positive supply
10	5.5	OUT2A	0	Output half bridge 2A
.01/5	10, 11	OUT1B	0	Output half bridge 1B
0	12	VCC1B	PWR	Positive supply
	13	GND1B	PWR	Negative supply
	14	GND1A	PWR	Negative supply
	15	VCC1A	PWR	Positive supply
	16, 17	OUT1A	0	Output half bridge 1A
	18	N.C.	-	No internal connection
	19	GND_CLEAN	PWR	Logical ground
	20	GND_REG	PWR	Ground for regulator V _{DD}
	21, 22	VDD	PWR	5-V regulator referred to ground
	23	VL	PWR	High logical state setting voltage, V _L

Pin description STA517B

Table 2. Pin function (continued)

Pin	Name	Туре	Description
24	CONFIG	I	Configuration pin: 0: normal operation 1: bridges in parallel (OUT1A = OUT1B, OUT2A = OUT2B (If IN1A = IN1B, IN2A = IN2B))
25	PWRDN	I	Standby pin: 0: low-power mode 1: normal operation
26	TRISTATE	I	Hi-Z pin: 0: all power amplifier outputs in high impedance state 1: normal operation
27	FAULT	0	Fault pin advisor (open-drain device, needs pull-up resisior): 0: fault detected (short circuit or thermal, for example) 1: normal operation
28	TH_WARN	0	Thermal warning advisor (open-drain de vice, needs pull-up resistor): 0: temperature of the IC >120 °C 1: normal operation
29	IN1A	I	Input of half bridge 'A
30	IN1B	I	Input of half undge 1B
31	IN2A	I	Input of naif bridge 2A
32	IN2B		Imput of half bridge 2B
33, 34	VSS	PW'5	5-V regulator referred to +V _{CC}
35, 36	VCC_SIGN	rwa	Signal positive supply
ete F	210000		

3 Electrical characteristics

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CC_MAX}	DC supply voltage (pins 4, 7, 12, 15)	60	V
V _{max}	Maximum voltage on pins 23 to 32	5.5	V
T _{j_MAX}	Operating junction temperature	0 to 150	°C
T _{stg}	Storage temperature	-40 to 150	°C

Warning:

Stresses beyond those listed under "Absolute maxinum ratings" make cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended operating condition" are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. In the real application, power supply with mominal value rated inside recommended operating conditions, may experience some rising beyond the maximum operating condition for short time when no or very low current is sinked (amplifier in mute state). In this case the reliability of the device is guaranteed, provided that the absolute maximum rating is not exceeded.

Table 4. Thermal data

Symbol	Parameter	Min	Тур	Max	Unit
Tjesse	Thermal resistance junction to case (thermal pad)	-	1	2.5	°C/W
J _{ISD}	Thermal shut-down junction temperature	-	150	-	°C
T _{warn}	Thermal warning temperature	-	130	-	°C
t _{hSD}	Thermal shut-down hysteresis	-	25	-	°C

Table 5. Recommended operating conditions

Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	Supply voltage for pins PVCCA, PVCCB	10	-	56	٧
T _{amb}	Ambient operating temperature	0	-	70	°C

Electrical characteristics STA517B

Unless otherwise stated, the test conditions for *Table 6* below are V_L = 3.3 V, V_{CC} = 50 V and T_{amb} = 25 °C

Table 6. Electrical characteristics

	Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
	R _{dsON}	Power P-channel/N-channel MOSFET R _{dsON}	I _{dd} = 1 A	-	200	240	mΩ
	I _{dss}	Power P-channel/N-channel leakage Idss	-	-	-	100	μΑ
	g _N	Power P-channel R _{dsON} matching	I _{dd} = 1 A	95	-	-	%
	g _P	Power N-channel R _{dsON} matching	I _{dd} = 1 A	95	-	1/5	%
	Dt_s	Low current dead time (static)	see Figure 3	-	10	2)	ns
	Dt_d	High current dead time (dynamic)	L = 22 μ H, C = 470 nF R _L = 8 Ω , I _{dd} = 4.5 A see <i>Figure 4</i>	210	000	50	ns
	t _{d ON}	Turn-on delay time	Resistive load	-	-	100	ns
	t _{d OFF}	Turn-off delay time	Resistive load	-	-	100	ns
	t _r	Rise time	Resigne !cad	-	-	25	ns
	t _f	Fall time	F.esistive load see <i>Figure 3</i>	-	-	25	ns
	V _{IN-High}	High level inpu: v.\ltagə	-	-	-	V _L /2 + 300 mV	V
	V _{IN-Low}	Low level input voltage	-	V _L / 2 - 300 mV	-	-	V
	I _{IN-H}	ı ligir level input current	$V_{IN} = V_{L}$	-	1		μΑ
,	I _{IN:-L}	Low level input current	V _{IN} = 0.3 V	-	1	ı	μΑ
0/6	^l pwrdn-H	High level PWRDN pin input current	V _L = 3.3 V	-	35	-	μΑ
Opso	V_{Low}	Low logical state voltage (pins PWRDN, TRISTATE) (see <i>Table 7</i>)	V _L = 3.3 V	0.8	-		V
	V_{High}	High logical state voltage (pins PWRDN, TRISTATE) (see <i>Table 7</i>)	V _L = 3.3 V		-	1.7	V
	I _{VCC} -	Supply current from V _{CC} in power down	V _{PWRDN} = 0 V	-	-	3	mA
	I _{FAULT}	Output current on pins FAULT, TH_WARN with fault condition	V _{pin} = 3.3 V	-	1	-	mA
	I _{VCC-HiZ}	Supply current from V _{CC} in tristate	V _{TRISTATE} = 0 V	-	22	-	mA

6/14 Doc ID 13184 Rev 4

Table 6. Electrical characteristics (continued)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
lvcc	Supply current from V _{CC} in operation, both channels switching)	Input pulse width = 50% duty, switching frequency = 384 kHz, no LC filters	-	70	-	mA
I _{OCP}	Overcurrent protection threshold lsc (short-circuit current limit) ⁽¹⁾	-	6.5	8	10	А
V _{UVP}	Undervoltage protection threshold	-	-	7	-	V
V _{OVP}	Overvoltage protection threshold	-	60	-	70	V
t _{pw_min}	Output minimum pulse width	No load	25	90	40	ns

^{1.} See specific application note number: AN1994

Table 7. Threshold switching voltage variation with voltage on pin VL

Voltage on pin VL, V _L	V _{LOW} max	V _{HIGH} min	Unit
2.7	0.7	1.5	V
3.3	0.8	1.7	V
5.0	0.85	1.85	V

Table 8. Logic truth table

	Pin	Pin Inpາດຣ ລວ per <i>Figure 4</i>		Transistors as per Figure 4				Output mode	
	TRISTATE	iNxA	INxB	Q1	Q2	Q3	Q4	Output mode	
	0	х	х	Off	Off	Off	Off	Hi Z	
16		0	0	Off	Off	On	On	Dump	
60,	1	0	1	Off	On	On	Off	Negative	
002	1	1	0	On	Off	Off	On	Positive	
	1	1	1	On	On	Off	Off	Not used	

Electrical characteristics STA517B

3.1 Test circuits

Figure 3. Test circuit

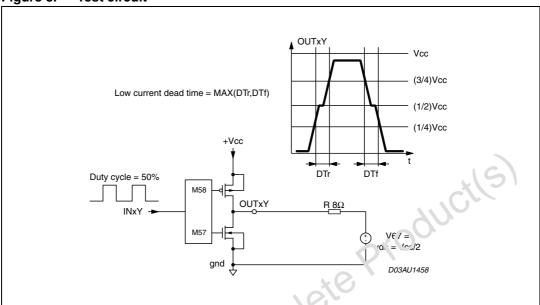
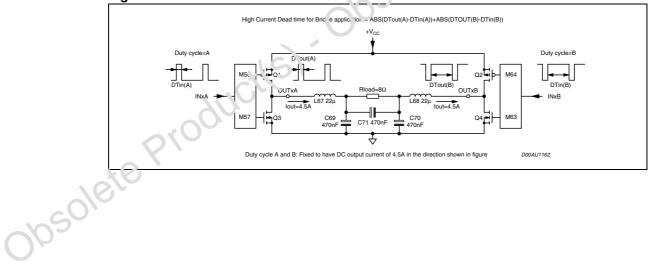



Figure 4. Current dead-time test circuit

4 Power supply and control sequencing

To guarantee correct operation and reliability, the recommended power-on/off sequence as shown in *Figure 5* must be followed

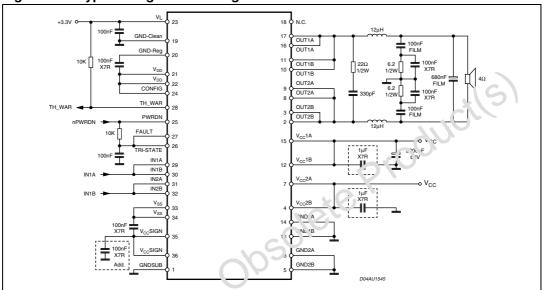
Figure 5. Correct power-on/off sequence

IN

 V_{CC} must turn on before V_L . This prevents uncontrolled current flowing through the internal protection diode connected between V_L (${}^{l}_{CG}$ supply) and V_{CC} (high power supply). which could result in damage to the device.

PWRDN must be released after V_L is switched on. An input signal can then be sent to the power stage.

577


Doc ID 13184 Rev 4

Applications STA517B

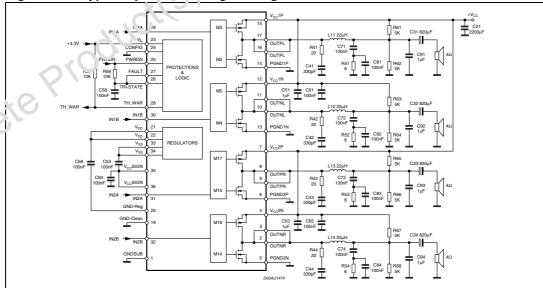
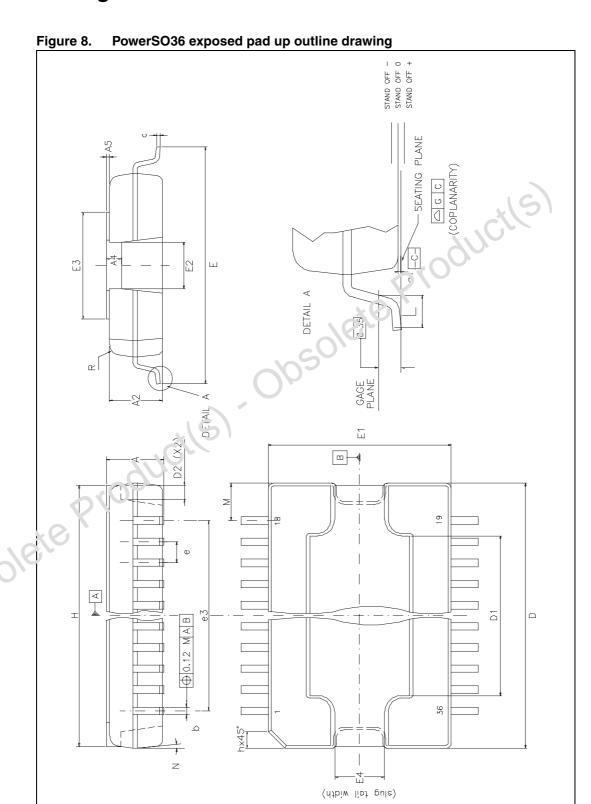

Applications 5

Figure 6 below shows a single-BLT configuration capable of giving 360 W into a 4- Ω load at 10% THD with V_{CC} = 55 V. This result was obtained using the STA30X+STA50X demo board. Note that a PWM modulator as driver is required.

Typical single-BTL configuration for 360 W Figure 6.


Typical quad half-oridge configuration Figure 7.

For more information, refer to the application note AN1994.

577 Doc ID 13184 Rev 4 10/14

6 Package mechanical data

Doc ID 13184 Rev 4 11/14

Table 9. PowerSO36 exposed pad up dimensions

	Cumb a l	mm			inch			
	Symbol	Min	Тур	Max	Min	Тур	Max	
/	Ą	3.25	-	3.43	0.128	-	0.135	
/	A 2	3.10	-	3.20	0.122	-	0.126	
1	A 4	0.80	-	1.00	0.031	-	0.039	
1	A 5	-	0.20	-	-	0.008	-	
á	a1	0.03	-	-0.04	0.001	-	-0.002	
k	0	0.22	-	0.38	0.009	-	0.015	
(0	0.23	-	0.32	0.009	-	0.013	
[D	15.80	-	16.00	0.622	- (0.530	
[D1	9.40	-	9.80	0.370	- 40,	0.386	
[D2	-	1.00	-	-	0.039	-	
E	E	13.90	-	14.50	0.547	-	0.571	
E	E1	10.90	-	11.10	0.42,7	-	0.437	
E	E2	-	-	2.90		-	0.114	
E	E3	5.80	-	6.20	0.228	-	0.244	
E	E4	2.90	-	3.20	0.114	-	0.126	
6	е	-	0.65	-	-	0.026	-	
6	e3	-	11.65	-	-	0.435	-	
(G	0		0.08	0	-	0.003	
ŀ	Н	15.50	-	15.90	0.610	-	0.626	
ł	1	40	-	1.10	-	-	0.043	
l		0.80	-	1.10	0.031	-	0.043	
	1	2.25	-	2.60	0.089	-	0.102	
	N	-	-	10 degrees	-	-	10 degrees	
F	R	-	0.6	-	-	0.024	-	
5	S	-	-	8 degrees	-	-	8 degrees	

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

12/14 Doc ID 13184 Rev 4

STA517B Revision history

7 Revision history

Table 10. Document revision history

	Date	Revision	Changes
	01-Feb-2007	1	Initial release.
	19-Mar-2007	2	Update to reflect product maturity.
	11-Aug-2009	3	Updated section Description on cover page.
	21-Jan-2010	4	Updated title to 6.5 A on cover page Updated text and figure caption in <i>Chapter 5: Applications on page 10</i> .
Obsole	te Pro	ducil	Updated text and figure caption in Chapter 5: Applications on page 10.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its sulhsidia. 'eu ('ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and sen ices described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and solvices described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property Liquis is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a trainant covering the use in any manner whatsoever of such third party products or services or any intellectual property containe 2 to 3 in 3 in 3.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE ANCION BALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNE'SE FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN VIRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCT'S OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PF OP ENTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of S. p. or ucts with provisions different from the statements and/or technical features set forth in this document shall immediately void any war and granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liabi. To T.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

14/14 Doc ID 13184 Rev 4

