PACKAGE/ORDERING INFORMATION

MODEL	V _{OUT} (V)	PIN- PACKAGE	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKAGE OPTION
SGM2007-1.8	1.8V	SOT-23-5	-40℃ to +125℃	SGM2007-1.8XN5/TR	X718	Tape and Reel, 3000
SGM2007-2.5	2.5V	SOT-23-5	-40℃ to +125℃	SGM2007-2.5XN5/TR	X725	Tape and Reel, 3000
SGM2007-2.7	2.7V	SOT-23-5	-40℃ to +125℃	SGM2007-2.7XN5/TR	X727	Tape and Reel, 3000
SGM2007-2.8	2.8V	SOT-23-5	-40℃ to +125℃	SGM2007-2.8XN5/TR	X728	Tape and Reel, 3000
SGM2007-2.9	2.9V	SOT-23-5	-40℃ to +125℃	SGM2007-2.9XN5/TR	X729	Tape and Reel, 3000
SGM2007-3.0	3.0V	SOT-23-5	-40℃ to +125℃	SGM2007-3.0XN5/TR	X730	Tape and Reel, 3000
SGM2007-3.3	3.3V	SOT-23-5	-40℃ to +125℃	SGM2007-3.3XN5/TR	X733	Tape and Reel, 3000
SGM2007-3.6	3.6V	SOT-23-5	-40℃ to +125℃	SGM2007-3.6XN5/TR	X736	Tape and Reel, 3000
SGM2007A	adjustable	SOT-23-5	-40℃ to +125℃	SGM2007-XN5/TR	X7AA	Tape and Reel, 3000

ABSOLUTE MAXIMUM RATINGS

IN to GND	0.3V to 6V
Output Short-Circuit DurationEN to GND	0.3V to V _{IN}
OUT, BP/FB to GND	0.3V to (V _{IN} + 0.3V)
Power Dissipation, P _D @ T _A = 25°C	0.4147
SOT-23-5 Package Thermal Resistance	0.4٧٧
SOT-23-5, θ _{JA}	250°C/W
Operating Temperature Range	40°C to +125°C
Junction Temperature	150°C
Storage Temperature	65°C to +150°C
Lead Temperature (soldering, 10s)	260°C
ESD Susceptibility	
HBM	4000V
MM	400V

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

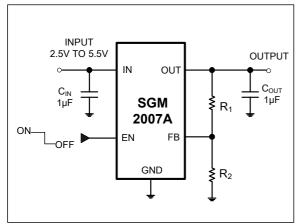
SGMICRO reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SGMICRO sales office to get the last datasheet.

PIN DESCRIPTION

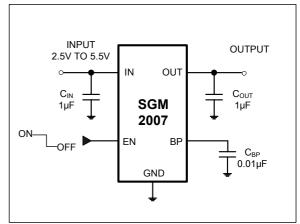
PIN	NAME	FUNCTION			
1	IN	Regulator Input. Supply voltage can range from 2.5V to 5.5V. Bypass with a 1μF capacitor to GND.			
2	GND	Ground.			
3	EN	Shutdown Input. A logic low reduces the supply current to 10nA. Connect to IN for normal operation.			
4	BP	Reference-Noise Bypass (fixed voltage version only). Bypass with a low-leakage 0.01µF ceramic capacitor for reduced noise at the output.			
4	FB	Adjustable voltage version only—this is used to set the output voltage of the device.			
5	OUT	Regulator Output.			

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = V_{OUT (NOMINAL)} + 0.5V^{(1)}, T_A = -40^{\circ}C$ to +125°C. Typical values are at $T_A = +25^{\circ}C$, unless otherwise noted.)


PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Voltage	V _{IN}			2.5		5.5	V
Output Voltage Accuracy (1)		I_{OUT} =1mA to 300mA, T_A = +25°C V_{OUT} + 0.5V \leq $V_{IN} \leq$ 5.5V		-3		+3	%
Maximum Output Current				300			mA
Current Limit	I _{LIM}			310	750		mA
Ground Pin Current		No load, EN = 2V			77	145	μА
Glound Pin Current	ΙQ	I _{OUT} = 300mA, EN = 2V			200		
Dropout Voltage (2)		I _{OUT} = 1mA I _{OUT} = 300mA			8.0		mV
Dropout voitage					300	380	
Line Regulation (1)	ΔV_{LNR}	V_{IN} = 2.5V or (V_{OUT} + 0.5V) to 5.5V, I_{OUT} = 1mA			0.03	0.15	%/V
Load Regulation	ΔV_{LDR}	I_{OUT} = 0.1mA to 300mA, C_{OU}			0.0008	0.002	%/mA
Output Voltage Noise	e _n	$f = 10Hz$ to $100kHz$, $C_{BP} = 0.01\mu F$, $C_{OUT} = 10\mu F$			30		μV_{RMS}
Power Supply Rejection Rate	PSRR	OBP - O. IMI , ILOAD - SOIII/1,	f = 100Hz		78		dB
1 ower Supply Rejection Rate			f = 1kHz		73		dB
SHUTDOWN							
EN Input Threshold	V_{IH}	V _{IN} = 2.5V to 5.5V		2.0			- V
EN Input Till Conoid	V_{IL}					0.4	
EN Input Pice Current	I _{B(SHDN)}	EN = 0V and EN = 5.5V	T _A = +25°C		0.01	1	μА
EN Input Bias Current			T _A = +125°C		0.01		
	I _{Q(SHDN)}	EN = 0.4V	T _A = +25°C		0.01	1	μА
Shutdown Supply Current			T _A = +125°C		0.01		
Shutdown Exit Delay (3)		$C_{BP} = 0.01\mu F$ $C_{OUT} = 1\mu F$, No load	T _A = +25°C		30		μs
THERMAL PROTECTION		•					
Thermal Shutdown Temperature	T _{SHDN}				160		°C
Thermal Shutdown Hysteresis	ΔT_{SHDN}				15		°C

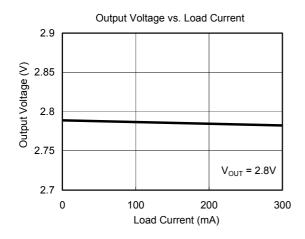
NOTES:

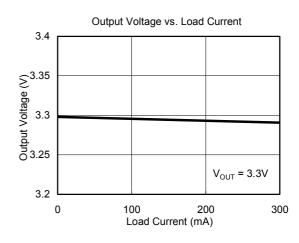

- 1. V_{IN} = $V_{OUT(NOMINAL)}$ + 0.5V or 2.5V, whichever is greater.
- 2. The dropout voltage is defined as V_{IN} V_{OUT} , when V_{OUT} is 100mV below the value of V_{OUT} for V_{IN} = V_{OUT} + 0.5V. (Only applicable for V_{OUT} = +2.5V to +5.0V.)
- 3. Time needed for V_{OUT} to reach 95% of final value.

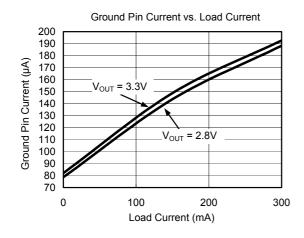
TYPICAL OPERATION CIRCUIT

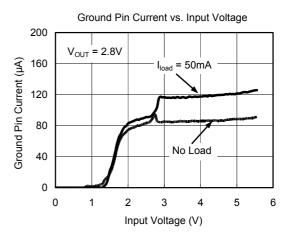
Adjustable Voltage Version

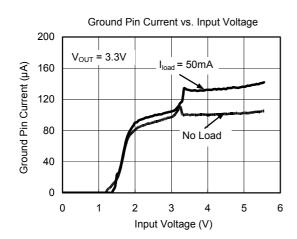
Fixed Voltage Version

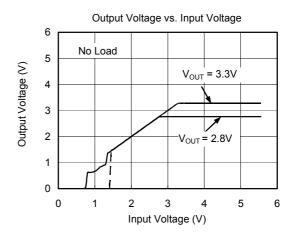

Standard 1% Resistor Values for Common Output Voltages of Adjustable Voltage Version

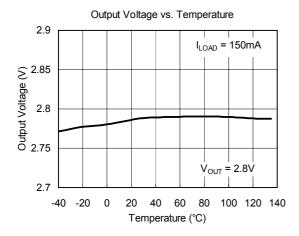

V _{OUT} (V)	$R_1(k\Omega)$	$R_2(k\Omega)$
1.5	13	61.9
1.8	28	61.9
2.5	63.4	61.9
2.7	56	47
2.8	78.7	61.9
2.9	75	56
3.0	88.7	61.9
3.3	95.3	57.6
3.6	130	68

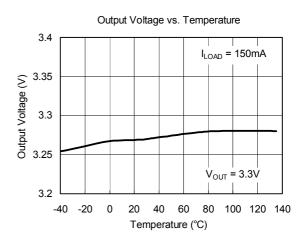

NOTE: $V_{OUT} = (R_1 + R_2)/R_2 \times 1.233$

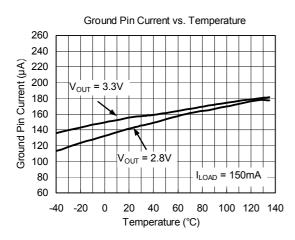

TYPICAL OPERATING CHARACTERISTICS

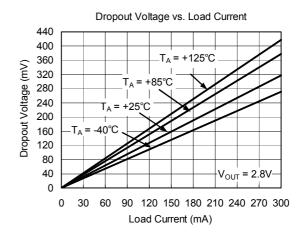

 $V_{IN} = V_{OUT(NOMINAL)} + 0.5V \text{ or } 2.5V \text{ (whichever is greater)}, \ C_{IN} = 1 \mu F, \ C_{OUT} = 1 \mu F, \ C_{BP} = 0.01 \mu F, \ T_A = +25 ^{\circ}C, \ unless \text{ otherwise noted.}$

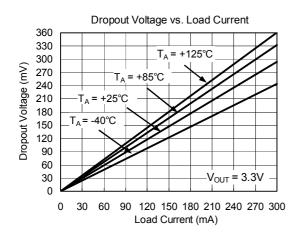


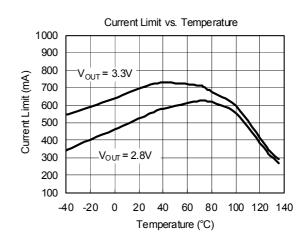


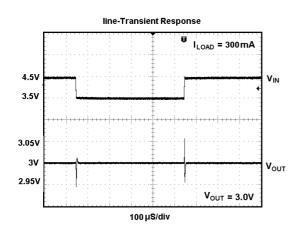


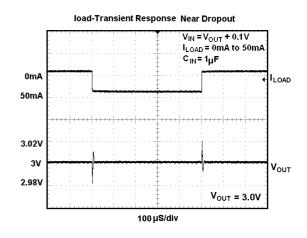


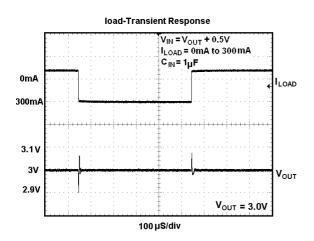

TYPICAL OPERATING CHARACTERISTICS

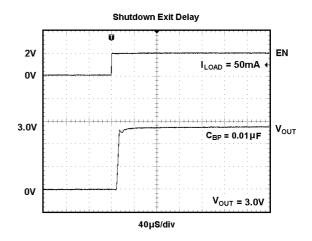

 $V_{IN} = V_{OUT(NOMINAL)} + 0.5V$ or 2.5V (whichever is greater), $C_{IN} = 1\mu F$, $C_{OUT} = 1\mu F$, $C_{BP} = 0.01\mu F$, $T_A = +25^{\circ}C$, unless otherwise noted.

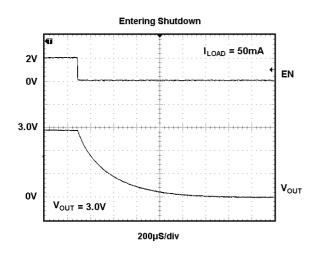


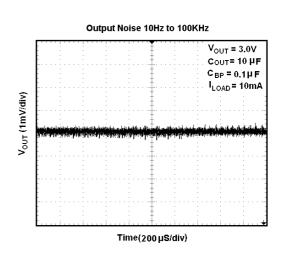


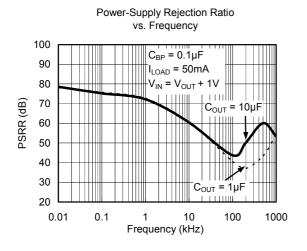


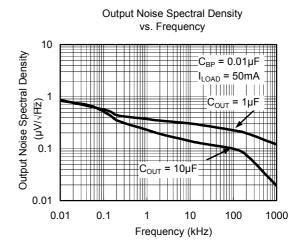


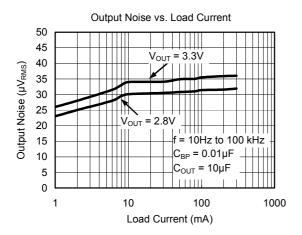

TYPICAL OPERATING CHARACTERISTICS

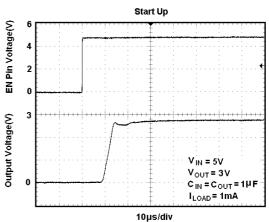

 $V_{IN} = V_{OUT(NOMINAL)} + 0.5V \text{ or } 2.5V \text{ (whichever is greater)}, \ C_{IN} = 1 \mu F, \ C_{OUT} = 1 \mu F, \ C_{BP} = 0.01 \mu F, \ T_A = +25 ^{\circ}C, \ unless \text{ otherwise noted.}$



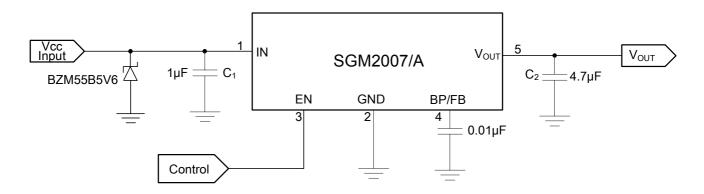


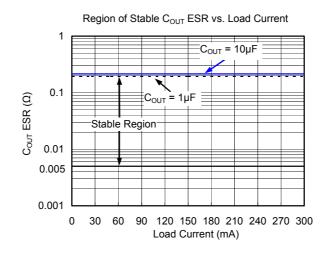





TYPICAL OPERATING CHARACTERISTICS

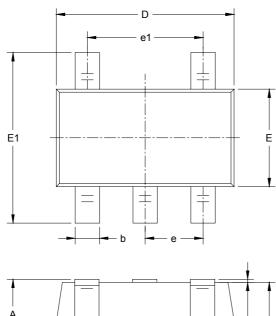
 V_{IN} = $V_{OUT(NOMINAL)}$ + 0.5V or 2.5V (whichever is greater), C_{IN} = 1 μ F, C_{OUT} = 1 μ F, C_{BP} = 0.01 μ F, T_A = +25°C, unless otherwise note

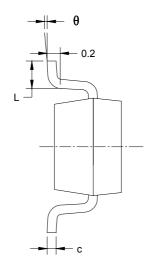


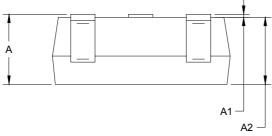


APPLICATION NOTES

When LDO is used in handheld products, attention must be paid to voltage spikes which could damage SGM2007/A. In such applications, voltage spikes will be generated at charger interface and V_{BUS} pin of USB interface when charger adapters and USB equipments are hot-plugged. Besides this, handheld products will be tested on the production line without battery. Test engineer will apply power from the connector pin which connects with positive pole of the battery. When external power supply is turned on suddenly, the voltage spikes will be generated at the battery connector. The voltage spikes will be very high, and it always exceeds the absolute maximum input voltage (6.0V) of LDO. In order to get robust design, design engineer needs to clear up this voltage spike. Zener diode is a cheap and effective solution to eliminate such voltage spike. For example, BZM55B5V6 is a 5.6V small package Zener diode which can be used to remove voltage spikes in cell phone designs. The schematic is shown below.


The SGM2007/A is designed specifically to work with low ESR ceramic output capacitor with space-saving and performance in consideration. Using a ceramic capacitor which is at least 1µF with ESR > 5m Ω on the SGM2007/A output ensures stability. The SGM2007/A still works well with output capacitor of other types due to the wide stable ESR range. The following figure shows the curves of allowable ESR range (5m Ω to 200m Ω) as a function of load current for various output capacitor values.





PACKAGE OUTLINE DIMENSIONS

SOT-23-5

Symbol	_	nsions imeters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950	BSC	0.037	BSC	
e1	1.900	BSC	0.075 BSC		
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	