

Thermal Resistance

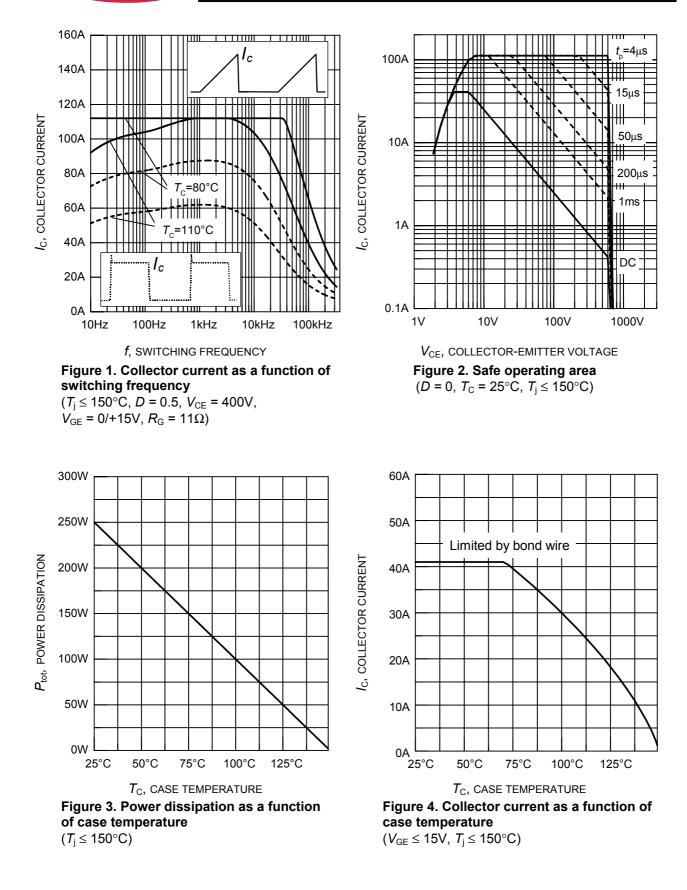
Parameter	Symbol	Conditions	Max. Value	Unit
Characteristic				·
IGBT thermal resistance,	R _{thJC}		0.5	K/W
junction – case				
Thermal resistance,	R _{thJA}		40	
junction – ambient ¹⁾				

Electrical Characteristic, at T_j = 25 °C, unless otherwise specified

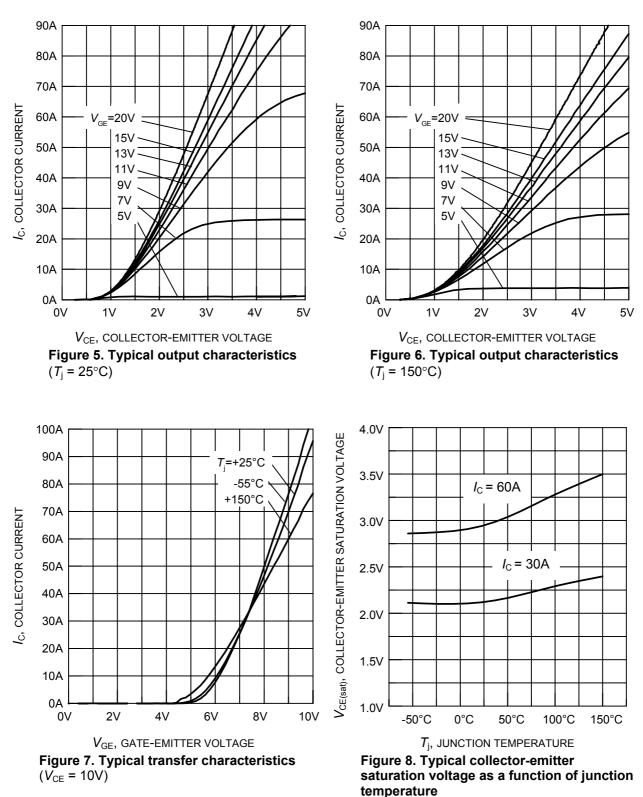
Parameter	Symbol Conditions	Value			Unit	
Parameter		Conditions	min.	Тур.	max.	
Static Characteristic						
Collector-emitter breakdown voltage	V _{(BR)CES}	$V_{\rm GE} = 0V, I_{\rm C} = 500 \mu A$	600	-	-	V
Collector-emitter saturation voltage	V _{CE(sat)}	$V_{\rm GE}$ = 15V, $I_{\rm C}$ =30A				
		T _j =25°C	1.7	2.1	2.4	
		<i>T</i> _j =150°C	-	2.5	3.0	
Gate-emitter threshold voltage	V _{GE(th)}	$I_{\rm C} = 700 \mu {\rm A}, V_{\rm CE} = V_{\rm GE}$	3	4	5	
Zero gate voltage collector current	I _{CES}	$V_{\rm CE}$ =600V, $V_{\rm GE}$ =0V				μA
		T _j =25°C	-	-	40	
		<i>T</i> _j =150°C	-	-	3000	
Gate-emitter leakage current	I _{GES}	$V_{\rm CE} = 0 V, V_{\rm GE} = 20 V$	-	-	100	nA
Transconductance	g fs	$V_{\rm CE}$ =20V, $I_{\rm C}$ =30A	-	20	-	S
Dynamic Characteristic						
Input capacitance	Ciss	V _{CE} =25V,	-	1600	1920	pF
Output capacitance	Coss	$V_{GE}=0V$,	-	150	180	
Reverse transfer capacitance	Crss	f=1MHz	-	92	110	
Gate charge	Q _{Gate}	V _{CC} =480V, <i>I</i> _C =30A	-	140	182	nC
		V _{GE} =15V				
Internal emitter inductance	LE		-	7	-	nH
measured 5mm (0.197 in.) from case						
Short circuit collector current ²⁾	I _{C(SC)}	V_{GE} =15V, t_{SC} ≤10µs V_{CC} ≤ 600V, T_{j} ≤ 150°C	-	300	-	A

¹⁾ Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70μm thick) copper area for collector connection. PCB is vertical without blown air.
²⁾ Allowed number of short circuits: <1000; time between short circuits: >1s.

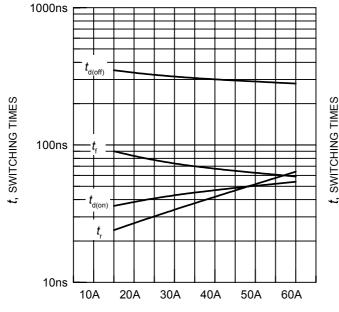
Switching Characteristic, Inductive Load, at Tj=25 °C

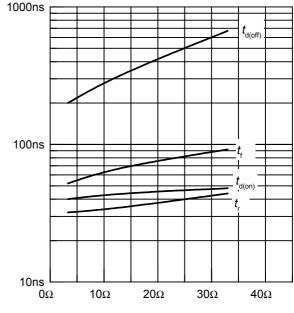

Parameter	Symbol	Conditions	Value			Unit
			min.	typ.	max.	
IGBT Characteristic						
Turn-on delay time	t _{d(on)}	$T_{j}=25^{\circ}C,$ $V_{CC}=400V, I_{C}=30A,$ $V_{GE}=0/15V,$ $R_{G}=11\Omega,$ $L_{\sigma}^{(1)}=180nH,$ $C_{\sigma}^{(1)}=900pF$ Energy losses include	-	44	53	ns
Rise time	t _r		-	34	40	
Turn-off delay time	$t_{d(off)}$		-	291	349	
Fall time	t _f		-	58	70	
Turn-on energy	Eon		-	0.64	0.77	mJ
Turn-off energy	E _{off}	"tail" and diode	-	0.65	0.85	
Total switching energy	E _{ts}	reverse recovery.	-	1.29	1.62	1

Switching Characteristic, Inductive Load, at T_j=150 °C

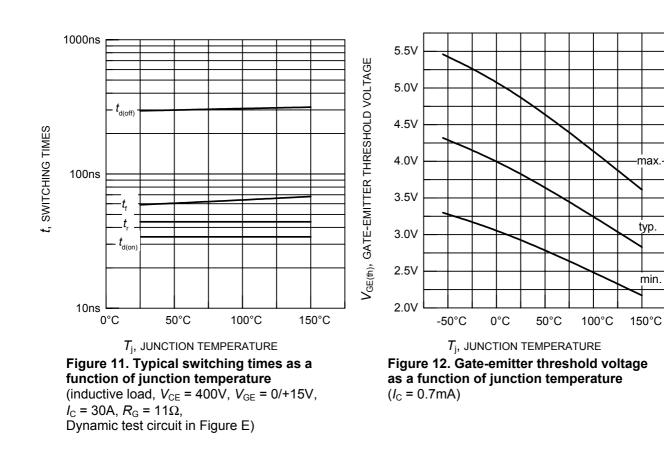

Parameter	Symbol	Conditions	Value			11
			min.	typ.	max.	Unit
IGBT Characteristic						
Turn-on delay time	t _{d(on)}	$T_{j}=150^{\circ}C$ $V_{CC}=400V, I_{C}=30A,$ $V_{GE}=0/15V,$ $R_{G}=11\Omega,$ $L_{\sigma}^{(1)}=180nH,$ $C_{\sigma}^{(1)}=900pF$ Energy losses include	-	44	53	ns
Rise time	tr		-	34	40	
Turn-off delay time	$t_{d(off)}$		-	324	389	
Fall time	t _f		-	67	80	
Turn-on energy	Eon		-	0.98	1.18	mJ
Turn-off energy	E _{off}	"tail" and diode	-	0.92	1.19	
Total switching energy	Ets	reverse recovery.	-	1.90	2.38	

 $^{1)}$ Leakage inductance L_{σ} and Stray capacity C_{σ} due to dynamic test circuit in Figure E.




 $(V_{\rm GE} = 15V)$

 $I_{\rm C}$, COLLECTOR CURRENT


Figure 9. Typical switching times as a function of collector current (inductive load, $T_j = 150$ °C, $V_{CE} = 400$ V, $V_{GE} = 0/+15$ V, $R_G = 11\Omega$, Dynamic test circuit in Figure E)

 $R_{\rm G}$, gate resistor

Figure 10. Typical switching times as a function of gate resistor (inductive load, $T_j = 150^{\circ}$ C, $V_{CE} = 400$ V, $V_{GE} = 0/+15$ V, $I_C = 30$ A,

Dynamic test circuit in Figure E)

Downloaded from Arrow.com.

5.0mJ *) Eon and Ets include losses E_{ts}^{*} 4.5mJ due to diode recovery. 4.0mJ SWITCHING ENERGY LOSSES 3.5mJ 3.0mJ E_{on}* 2.5mJ $E_{\rm off}$ 2.0mJ 1.5mJ шî 1.0mJ 0.5mJ 0.0mJ 60A 10A 20A 30A 40A 50A 70A $I_{\rm C}$, COLLECTOR CURRENT

Figure 13. Typical switching energy losses as a function of collector current (inductive load, $T_j = 150$ °C, $V_{CE} = 400$ V, $V_{GE} = 0/+15$ V, $R_G = 11\Omega$, Dynamic test circuit in Figure E)

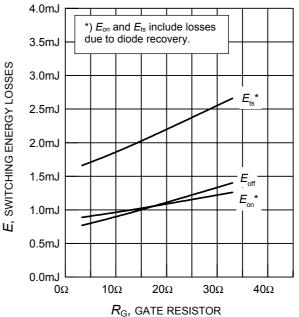


Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, $T_j = 150^{\circ}$ C, $V_{CE} = 400$ V, $V_{GE} = 0/+15$ V, $I_C = 30$ A, Dynamic test circuit in Figure E)

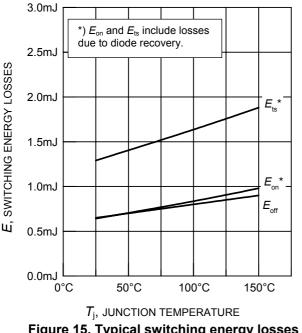
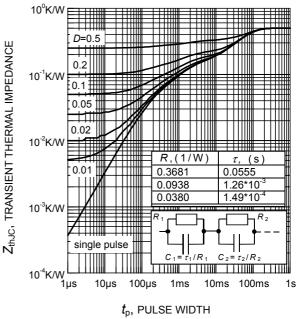
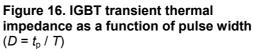
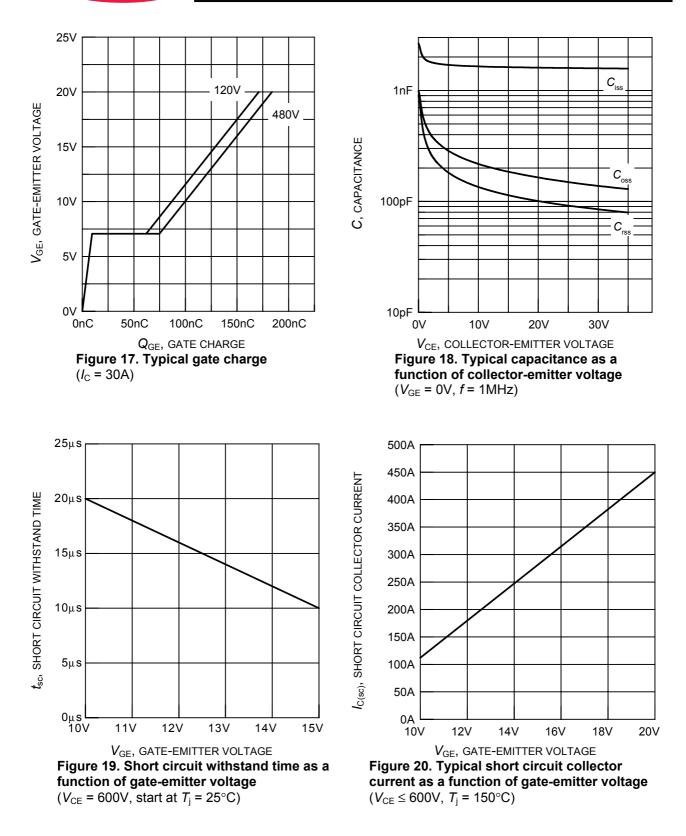
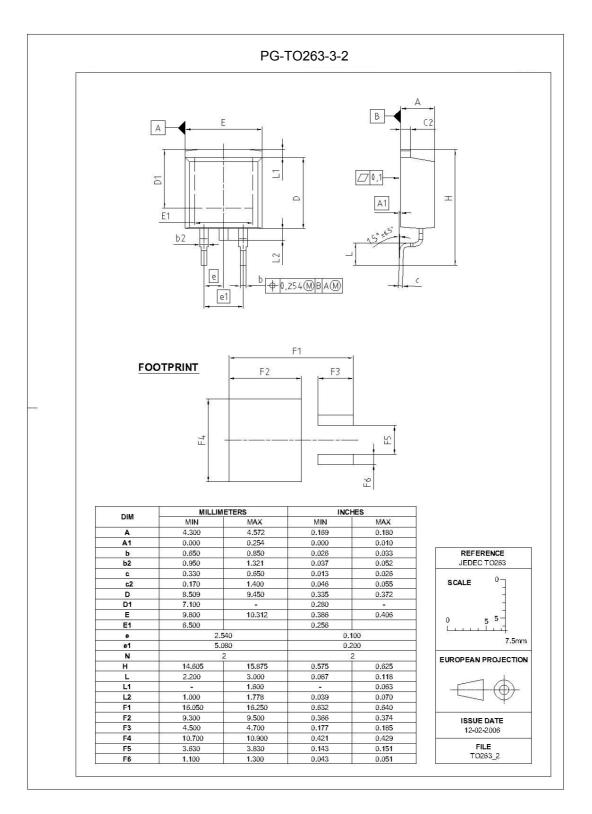





Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, V_{CE} = 400V, V_{GE} = 0/+15V, I_C = 30A, R_G = 11 Ω , Dynamic test circuit in Figure E)



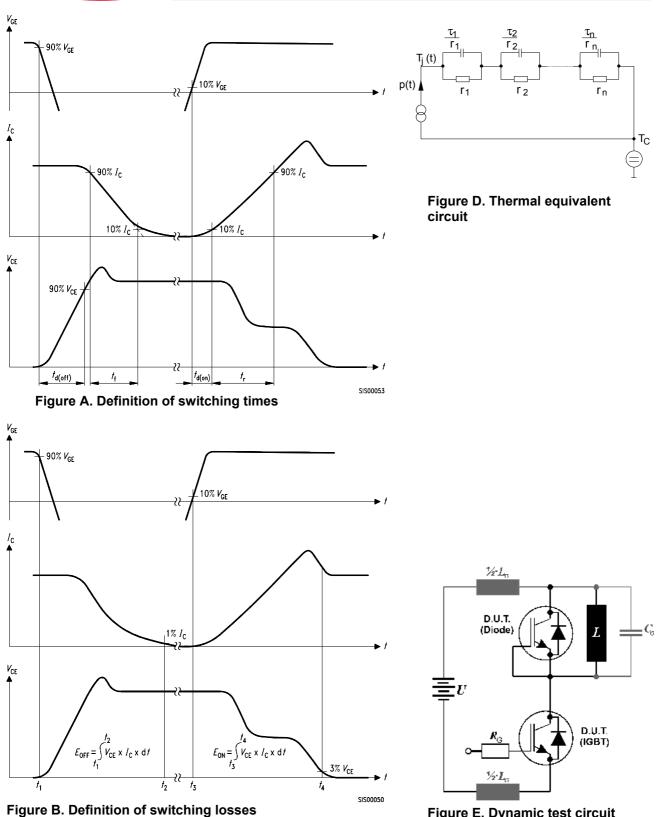


Figure E. Dynamic test circuit Leakage inductance L_{σ} =180nH and Stray capacity C_{σ} =900pF.

Downloaded from Arrow.com.

Published by Infineon Technologies AG 81726 Munich, Germany © 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.