2A Ultra-Small Controlled Load Switch with Auto-discharge Path

The NCP338 is very low Ron MOSFET controlled by external logic pin, allowing optimization of battery life, and portable device autonomy.

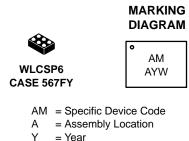
Indeed, due to a current consumption optimization with PMOS structure, leakage currents are eliminated by isolating connected IC on the battery when not used.

Output discharge path is also embedded to eliminate residual voltages on the output rail.

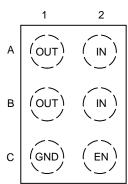
Proposed in a wide input voltage range from 1.0 V to 3.6 V, in a small 0.8 x 1.2 mm WLCSP6, pitch 0.4 mm.

Features

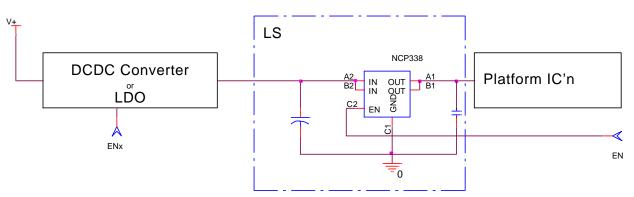
- 1.0 V 3.6 V Operating Range
- $16 \text{ m}\Omega \text{ P}$ MOSFET at 3.6 V
- DC Current Up to 2 A
- Output Auto-discharge
- Active High EN Pin
- WLCSP6 0.8 x 1.2 mm
- ESD Ratings: 6 kV HBM, 250 V MM
- This is a Pb–Free Device


Typical Applications

- Mobile Phones
- Tablets
- Digital Cameras
- GPS
- Portable Devices

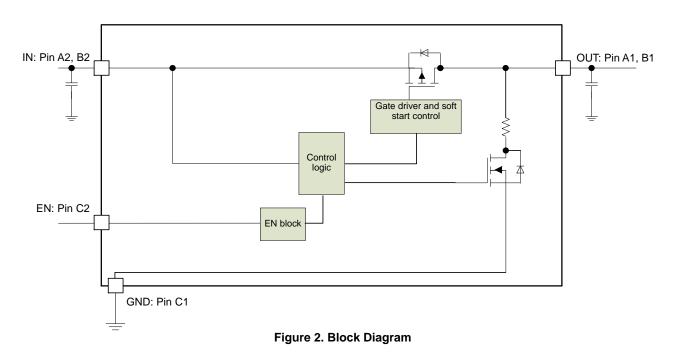

ON Semiconductor®

www.onsemi.com



ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.



PIN FUNCTION DESCRIPTION

Pin Name	Pin Number	Туре	Description
IN	A2, B2	POWER	Load–switch input voltage; connect a 1 μF or greater ceramic capacitor from IN to GND as close as possible to the IC.
GND	C1	POWER	Ground connection.
EN	C2	INPUT	Enable input, logic high turns on power switch.
OUT	A1, B1	OUTPUT	Load–switch output; connect a 1 μF ceramic capacitor from OUT to GND as close as possible to the IC is recommended.

BLOCK DIAGRAM

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
IN, OUT, EN, Pins	$V_{\text{EN},} V_{\text{IN},} V_{\text{OUT}}$	-0.3 to + 4.0	V
From IN to OUT Pins: Input/Output	V _{IN} , V _{OUT}	0 to + 4.0	V
Maximum Junction Temperature	TJ	-40 to + 125	°C
Storage Temperature Range	T _{STG}	-40 to + 150	°C
Human Body Model (HBM) ESD Rating are (Note 1 and 2)	ESD HBM	6000	V
Machine Model (MM) ESD Rating are (Note 1 and 2)	ESD MM	250	V
Moisture Sensitivity (Note 3)	MSL	Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. According to JEDEC standard JESD22–A108.

This device series contains ESD protection and passes the following tests: Human Body Model (HBM) ±2.0 kV per JEDEC standard: JESD22–A114 for all pins. Machine Model (MM) ±200 V per JEDEC standard: JESD22–A115 for all pins.

3. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020.

OPERATING CONDITIONS

Symbol	Parameter	C	Conditions	Min	Тур	Max	Unit
V _{IN}	Operational Power Supply			1.0		3.6	V
$V_{\sf EN}$	Enable Voltage			0		3.6	
T _A	Ambient Temperature Range			-40	25	+85	°C
TJ	Junction Temperature Range			-40	25	+125	°C
C _{IN}	Decoupling input capacitor			1			μF
C _{OUT}	Decoupling output capacitor			1			μF
R_{\thetaJA}	Thermal Resistance Junction to Air	WLCSP	package (Note 5)		100		°C/W
I _{OUT}	Maximum DC current					2	А
PD	Power Dissipation Rating (Note 6)	$T_A \le 25^\circ C$	WLCSP package			1	W
		$T_A = 85^{\circ}C$	WLCSP package			0.4	W

4. Latch up Current Maximum Rating: ±100 mA per JEDEC standard: JESD78 class II.

5. The $R_{\theta JA}$ is dependent of the PCB heat dissipation and thermal via. 6. The maximum power dissipation (PD) is given by the following formula:

$$\mathsf{P}_{\mathsf{D}} = \frac{\mathsf{T}_{\mathsf{JMAX}} - \mathsf{T}_{\mathsf{A}}}{\mathsf{R}_{\mathsf{\theta}\mathsf{JA}}}$$

ELECTRICAL CHARACTERISTICS Min and Max Limits apply for TA between -40°C to +85°C for VIN between 1.0 V to 3.6 V
(Unless otherwise noted). Typical values are referenced to $T_A = +25^{\circ}C$ and $V_{IN} = 3.6$ V (Unless otherwise noted).

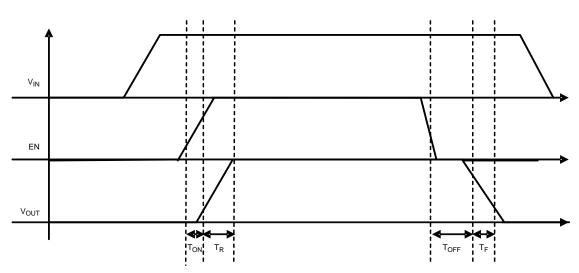
Symbol	Parameter	C	Conditions	Min	Тур	Max	Unit
POWER S	WITCH						
		V _{IN} = 3.6 V	$T_A = 25^{\circ}C$		16	27	
			$-40^{\circ}C < T_A < 85^{\circ}C$			30	
		V _{IN} = 2.5 V	T _A = 25°C		21	36	
	Static drain-source on-state resist-		$-40^{\circ}C < T_A < 85^{\circ}C$			40	mΩ
Rea()	ance at -200 mA	V _{IN} = 1.8 V	$T_A = 25^{\circ}C$		27	40	
R _{DS(on)}			$-40^{\circ}C < T_A < 85^{\circ}C$			45	
		V _{IN} = 1.2 V	T _A = 25 °C		52	87	
			$-40^{\circ}C < T_A < 85^{\circ}C$			99	
	Static drain-source on-state resist- ance at -100 mA	V _{IN} = 1.1 V	$T_A = 25^{\circ}C$		67		
Rdis	Output discharge path	EN = low	Vin = 3.3 V		65	90	Ω
V _{IH}	High-level input voltage	Vin = 1.8 V		0.95			V
VIL	Low-level input voltage					0.5	V
I _{EN}	EN leakage current				20		nA

CURRENT CONSUMPTION

lstd	Standby current	V_{OUT} = open, EN = low, V_{IN} = 3.6 V	20	300		
1510	Standby current	V_{OUT} = open, EN = low, V_{IN} = 1.8 V	4	300	n 4	
la	Quiescent current	V_{OUT} = open, EN = high, V_{IN} = 3.6 V	200	600	nA	
Iq	Quiescent current	V_{OUT} = open, EN = high, V_{IN} = 1.8 V	80	300		

7. Parameters are guaranteed for C_{LOAD} and R_{LOAD} connected to the OUT pin with respect to the ground. 8. Guaranteed by design and characterization.

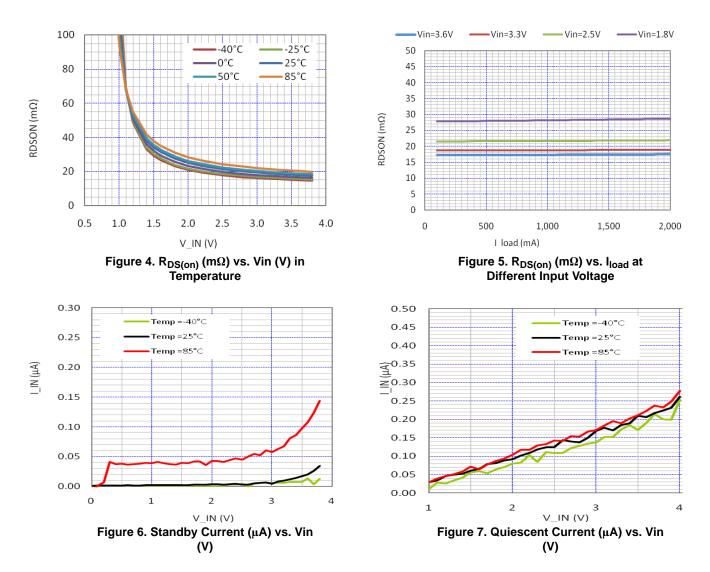
ELECTRICAL CHARACTERISTICS Min and Max Limits apply for TA between -40°C to +85°C for VIN between 1.0 V to 3.6 V	
(Unless otherwise noted). Typical values are referenced to $T_A = +25^{\circ}C$ and $V_{IN} = 3.6 \text{ V}$ (Unless otherwise noted).	


Symbol	Parameter	Conditions		Min	Тур	Max	Unit
TIMINGS							
T _{ON}	Turn on time		$\begin{array}{l} C_{LOAD} = 0.1 \ \mu\text{F}, \\ R_{LOAD} = 500 \ \Omega \\ (\text{Note 7}) \end{array}$		40		
ON			$C_{LOAD} = 1 \ \mu F,$ $R_{LOAD} = 500 \ \Omega$ (Note 7)		40		
T _R	V _{OUT} rise time		$\begin{array}{l} C_{\text{LOAD}} = 0.1 \; \mu\text{F}, \\ R_{\text{LOAD}} = 500 \; \Omega \\ (\text{Note 7}) \end{array}$		20		
'R		V _{IN} = 1.2 V	$\begin{array}{l} C_{LOAD} = 1 \; \muF, \\ R_{LOAD} = 500 \; \Omega \\ (Note \; 7) \end{array}$		25		μs
T _{OFF}	Turn off time	VIN - 1.2 V	$\begin{array}{l} C_{LOAD} = 0.1 \; \muF, \\ R_{LOAD} = 500 \; \Omega \\ (Note \; 7) \end{array}$		10		μο
'OFF	Turn off time		$\begin{array}{l} C_{LOAD} = 1 \; \muF, \\ R_{LOAD} = 500 \; \Omega \\ (Note \; 7) \end{array}$		10		
T	V _{OUT} fall time		$\begin{array}{l} C_{LOAD} = 0.1 \; \muF, \\ R_{LOAD} = 500 \; \Omega \\ (Note \; 7) \end{array}$		20		
T _{FALL}			$\begin{array}{l} C_{\text{LOAD}} = 1 \; \mu\text{F}, \\ R_{\text{LOAD}} = 500 \; \Omega \\ (\text{Note 7}) \end{array}$		200		
TIMINGS							
T _{ON}	Turn on time		$\begin{array}{l} C_{\text{LOAD}} = 0.1 \ \mu\text{F}, \\ R_{\text{LOAD}} = 500 \ \Omega \\ (\text{Note 7}) \end{array}$		40		
ON			$\begin{array}{l} C_{\text{LOAD}} = 1 \; \mu\text{F}, \\ \text{R}_{\text{LOAD}} = 500 \; \Omega \\ (\text{Note 7}) \end{array}$		40		
T _R	V _{OUT} rise time		$\begin{array}{l} C_{\text{LOAD}} = 0.1 \ \mu\text{F}, \\ R_{\text{LOAD}} = 500 \ \Omega \\ (\text{Note 7}) \end{array}$		30		
'R	VOUT ise time	V _{IN} = 1.8 V	$\begin{array}{l} C_{\text{LOAD}} = 1 \; \mu\text{F}, \\ \text{R}_{\text{LOAD}} = 500 \; \Omega \\ (\text{Note 7}) \end{array}$		35		
Τ	Turn off time	VIN = 1.0 V	$\begin{array}{l} C_{LOAD} = 0.1 \; \muF, \\ R_{LOAD} = 500 \; \Omega \\ (Note \; 7) \end{array}$		10		μs
T _{OFF}		-	$\begin{array}{l} C_{\text{LOAD}} = 1 \ \mu\text{F}, \\ R_{\text{LOAD}} = 500 \ \Omega \\ (\text{Note 7}) \end{array}$		10		
T _{FALL}	V _{OUT} fall time		$\begin{array}{l} C_{\text{LOAD}} = 0.1 \; \mu\text{F}, \\ R_{\text{LOAD}} = 500 \; \Omega \\ (\text{Note 7}) \end{array}$		15		
' FALL			$\begin{array}{l} C_{\text{LOAD}} = 1 \; \mu\text{F}, \\ R_{\text{LOAD}} = 500 \; \Omega \\ (\text{Note 7}) \end{array}$		150		

7. Parameters are guaranteed for C_{LOAD} and R_{LOAD} connected to the OUT pin with respect to the ground. 8. Guaranteed by design and characterization.

ELECTRICAL CHARACTERISTICS Min and Max Limits apply for TA between -40°C to +85°C for VIN between 1.0 V to 3.6 V	
(Unless otherwise noted). Typical values are referenced to $T_A = +25^{\circ}C$ and $V_{IN} = 3.6 V$ (Unless otherwise noted).	

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
TIMINGS							
т	Turn on time		$\begin{array}{l} C_{\text{LOAD}} = 0.1 \ \mu\text{F}, \\ R_{\text{LOAD}} = 500 \ \Omega \\ (\text{Note 7}) \end{array}$		30		-
T _{ON}	rum on ume		$\begin{array}{l} C_{LOAD} = 1 \; \muF, \\ R_{LOAD} = 500 \; \Omega \\ (Note \; 7) \end{array}$	0	32	80	
T _R	V _{OUT} rise time		$\begin{array}{l} C_{LOAD} = 0.1 \ \muF, \\ R_{LOAD} = 500 \ \Omega \\ (Note 7) \end{array}$		20		
'R		V _{IN} = 3.6 V	$\begin{array}{l} C_{\text{LOAD}} = 1 \; \mu\text{F}, \\ R_{\text{LOAD}} = 500 \; \Omega \\ (\text{Note 7}) \end{array}$	0	20	50	μs
Т	Turn off time		$\begin{array}{l} C_{\text{LOAD}} = 0.1 \; \mu\text{F}, \\ R_{\text{LOAD}} = 500 \; \Omega \\ (\text{Note 7}) \end{array}$		10		
T _{OFF}			$\begin{array}{l} C_{\text{LOAD}} = 1 \; \mu\text{F}, \\ R_{\text{LOAD}} = 500 \; \Omega \\ (\text{Note 7}) \end{array}$	0	10	40	
T _{FALL}	V _{OUT} fall time		$\begin{array}{l} C_{LOAD} = 0.1 \; \muF, \\ R_{LOAD} = 500 \; \Omega \\ (Note \; 7) \end{array}$		10		
			$\begin{array}{l} C_{\text{LOAD}} = 1 \ \mu\text{F}, \\ R_{\text{LOAD}} = 500 \ \Omega \\ (\text{Note 7}) \end{array}$	0	100	300	


7. Parameters are guaranteed for C_{LOAD} and R_{LOAD} connected to the OUT pin with respect to the ground. 8. Guaranteed by design and characterization.

TIMINGS

Figure 3. Enable, Rise and Fall Time

TYPICAL CHARACTERISTICS

FUNCTIONAL DESCRIPTION

Overview

The NCP338 is a high side P channel MOSFET power distribution switch designed to isolate ICs connected on the battery in order to save energy. The part can be turned on, with a wide range of battery from 1.0 V to 3.6 V.

Enable Input

Enable pin is an active high. The path is opened when EN pin is tied low (disable), forcing P–MOS switch off.

The IN/OUT path is activated with a minimum of Vin of 1.2 V and EN forced to high level.

Auto Discharge

N–MOSFET is placed between the output pin and GND, in order to discharge the application capacitor connected on OUT pin. The auto-discharge is activated when EN pin is set to low level (disable state).

The discharge path (Pull down NMOS) stays activated as long as EN pin is set at low level and $V_{IN} > 1.0$ V.

In order to limit the current across the internal discharge N–MOSFET, the typical value is set at 65 Ω .

CIN and COUT Capacitors

IN and OUT, 1 μ F, at least, capacitors must be placed as close as possible the part to for stability improvement.

APPLICATION INFORMATION

Power Dissipation

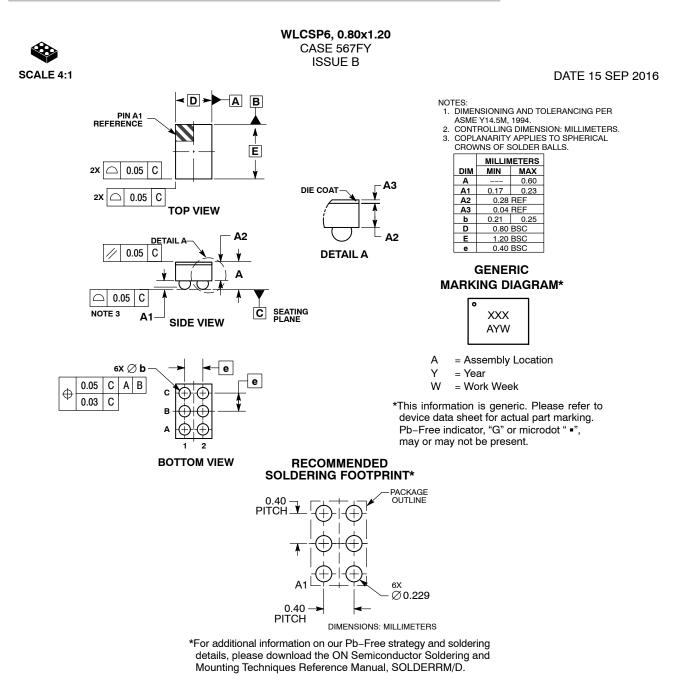
Main contributor in term of junction temperature is the power dissipation of the power MOSFET. Assuming this, the power dissipation and the junction temperature in normal mode can be calculated with the following equations:

$$\mathsf{P}_{\mathsf{D}} = \mathsf{R}_{\mathsf{DS(on)}} \times \left(\mathsf{I}_{\mathsf{OUT}}\right)^2$$

P _D	= Power dissipation (W)
R _{DS(on)}	= Power MOSFET on resistance (Ω)
IOUT	= Output current (A)

$$\begin{split} T_J &= P_D \times R_{\theta JA} + T_A \\ T_J &= \text{Junction temperature (°C)} \\ R_{\theta JA} &= \text{Package thermal resistance (°C/W)} \\ T_A &= \text{Ambient temperature (°C)} \end{split}$$

PCB Recommendations


The NCP338 integrates an up to 2 A rated PMOS FET, and the PCB design rules must be respected to properly evacuate the heat out of the silicon. By increasing PCB area, especially around IN and OUT pins, the $R_{\theta JA}$ of the package can be decreased, allowing higher power dissipation.

ORDERING INFORMATION

Device	Marking	Autodischarge	Package	Shipping [†]
NCP338FCCT2G	AM	Yes	WLCSP 0.8 x 1.2 mm (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DOCUMENT NUMBER:	98AON81820E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	WLCSP6, 0.80X1.20		PAGE 1 OF 1
ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.			

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥