ABSOLUTE MAXIMUM RATINGS | (Note 1) | | |---|--------------| | V _{IN} , V _{OUT} Voltages | 0.3V to 6V | | SHDN, FB Voltages | 0.3V to 6V | | SW Voltage | | | DC | 0.3V to 6V | | Pulsed < 100ns | 0.3V to 7V | | Operating Temperature Range | | | (Notes 2, 5) | 40°C to 85°C | | Storage Temperature Range | | ## PACKAGE/ORDER INFORMATION Lead Free Part Marking: http://www.linear.com/leadfree/ Consult LTC Marketing for parts specified with wider operating temperature ranges. ## **ELECTRICAL CHARACTERISTICS** The ullet denotes specifications which apply over the full operating temperature range, otherwise specifications are $T_A = 25^{\circ}C$. $V_{IN} = 2.4V$, $V_{OUT} = 3.3V$ unless otherwise specified. | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS | |-------------------------------|--|---|-------|-------|-------|-------| | Minimum Start-Up Voltage | I _{LOAD} < 1mA | • | | 1.6 | 1.8 | V | | Output Voltage Adjust Range | | • | 1.8 | | 5.25 | V | | Feedback Voltage | | • | 1.215 | 1.24 | 1.265 | V | | Feedback Input Current | V _{FB} = 1.24V | | | 1 | 50 | nA | | Quiescent Current—Shutdown | $V_{\overline{SHDN}} = 0V, V_{OUT} = 0V$ | | | 0.01 | 1 | μА | | Quiescent Current—Active | V _{FB} = 1.5V (Note 3) | | | 350 | 550 | μА | | NMOS Switch Leakage | | | | 0.1 | 5 | μΑ | | PMOS Switch Leakage | | | | 0.1 | 5 | μА | | NMOS Switch-On Resistance | | | | 0.525 | | Ω | | PMOS Switch-On Resistance | | | | 0.575 | | Ω | | NMOS Current Limit | | • | 500 | | | mA | | Current Limit Delay to Output | (Note 4) | | | 40 | | ns | | Maximum Duty Cycle | V _{FB} = 1V | • | 80 | 87 | | % | | Minimum Duty Cycle | V _{FB} = 1.5V | • | | | 0 | % | | Frequency | | • | 0.9 | 1.25 | 1.5 | MHz | | SHDN Input High | | | 1 | | | V | | SHDN Input Low | | | | | 0.35 | V | | SHDN Input Current | V _{SHDN} = 5.5V | | | 0.01 | 1 | μΑ | | Soft-Start Time | | | | 2 | | ms | ## **ELECTRICAL CHARACTERISTICS** Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Note 2: The LTC3427E is guaranteed to meet performance specifications from 0°C to 70°C. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls. **Note 3:** Current is measured into the V_{OLIT} pin since the supply current is bootstrapped to the output. The current will reflect to the input supply by: (V_{OLIT}/V_{IN}) • Efficiency. The outputs are not switching. Note 4: Specification is guaranteed by design and not 100% tested in production. Note 5: The LTC3427 includes an overtemperature shutdown that is intended to protect the device during momentary overload conditions. Junction temperature will exceed 125°C when the overtemperature shutdown is active. Continuous operation above the specified maximum operating junction temperature may impair device reliability. # TYPICAL PERFORMANCE CHARACTERISTICS $T_A = 25$ °C unless otherwise specified. # TYPICAL PERFORMANCE CHARACTERISTICS $T_A = 25^{\circ}C$ unless otherwise specified. # Frequency Accuracy vs Temperature #### **SW Pin Anti-Ringing Operation** ## $R_{DS(0N)}$ vs Temperature ## V_{IN} Supply Current (No Load) 3427fa ## PIN FUNCTIONS **SW** (Pin 1): Switch Pin for the Inductor Connection. Minimize trace length between SW and the inductor. For discontinuous inductor current, an internal 200Ω impedance is connected from SW to V_{IN} to eliminate high frequency ringing, reducing EMI radiation. **GND (Pin 2):** Signal and Power Ground. Provide a short, direct PCB path between GND and the (–) side of the input and output capacitor(s). V_{IN} (Pin 3): Input Supply Voltage. Connect V_{IN} to the input supply and decouple with a $2.2\mu F$ or larger ceramic capacitor as close to V_{IN} as possible. SHDN (Pin 4): Shutdown Input. Less than 350mV on SHDN shuts down the LTC3427. Placing 1V or more on SHDN enables the LTC3427. **FB (Pin 5):** Feedback Input to the Error Amplifier. Connect resistor divider tap to this pin. Referring to the Block Diagram, V_{OLIT} can be adjusted from 1.8V to 5.25V by: $$V_{OUT} = 1.24V \bullet \left(1 + \frac{R1}{R2}\right)$$ V_{OUT} (Pin 6): Output Voltage Sense Input and Drain of the Internal Synchronous Rectifier MOSFET. Driver bias is derived from V_{OUT} . PCB trace length from V_{OUT} to the output filter capacitor(s) should be as short and wide as possible. **Exposed Pad (Pin 7):** Ground for the LTC3427. This pin must be soldered to the PCB ground plane for electrical connection and rated thermal performance. ## **BLOCK DIAGRAM** ## **OPERATION** (Refer to Block Diagram) ## **LOW NOISE FIXED FREQUENCY OPERATION** #### Shutdown The LTC3427 is shut down by pulling the SHDN pin below 0.35V, and activated by pulling the SHDN pin above 1V. Note that SHDN can be driven above V_{IN} or V_{OUT} as long as it is limited to less than the absolute maximum rating. #### **Soft-Start** The LTC3427 provides soft-start by ramping the peak inductor current from zero to its peak value of 500mA. The soft-start time is typically 2ms. A soft-start cycle is reinitiated in the event of a commanded shutdown or a thermal shutdown. #### Oscillator The frequency of operation is set by an internal oscillator to 1.25MHz for the LTC3427. ## **Error Amplifier** The error amplifier is a transconductance type with its positive input internally connected to the 1.24V reference and the negative input connected to FB. Internal clamps limit the minimum and maximum error amplifier output voltage for improved large-signal transient response. Power converter control loop compensation is provided internally by the error amplifier. A voltage divider from V_{OUT} to ground programs the output voltage via FB from 1.8V to 5.25V. $$V_{OUT} = 1.24V \bullet \left(1 + \frac{R1}{R2}\right)$$ The error amplifier also provides a soft-start feature internal to the device. ## **Current Sensing** Lossless current sensing converts the peak current signal of the N-channel MOSFET switch into a voltage that is summed with the internal slope compensation. The summed signal is compared to the error amplifier output to provide a peak current control command for the PWM. Peak switch current is limited to 500mA minimum, independent of input or output voltage. The current signal is blanked for approximately 25ns to enhance noise rejection. #### **Current Limit** The current limit circuitry shuts off the internal N-channel MOSFET switch when the current limit threshold is reached. The current limit comparator delay to output is typically 40ns. #### **Zero Current Comparator** The zero current comparator monitors the inductor current to the output and shuts off the synchronous rectifier once this current reduces to approximately 20mA. ## **Anti-Ringing Control** The anti-ringing control connects a resistor across the inductor to damp the ringing on the SW pin in discontinuous conduction mode. The LC_{SW} ringing (L = Inductor, C_{SW} = capacitance on the SW pin) is low energy, but can cause EMI radiation. ## **Output Disconnect and Inrush Limiting** The LTC3427 provides true output disconnect by eliminating body diode conduction of the internal P-channel MOSFET rectifier. This allows V_{OUT} to go to zero volts during shutdown without drawing any current from the input source. It also provides inrush current limiting at turn-on, minimizing surge currents seen by the input supply. Note that to obtain the advantages of output disconnect, there must not be any external Schottky diode connected between SW and V_{OUT} . #### Thermal Shutdown If the die temperature reaches approximately 145°C, the part will go into thermal shutdown. All switches will be turned off. The device will be enabled and initiate a soft-start sequence when the die temperature drops by approximately 10°C. **Note:** Due to the high frequency operation of the LTC3427, board layout is extremely critical to minimize transients due to stray inductance. Keep the output filter capacitor as close as possible to the V_{OUT} pin and use very low ESR/ESL ceramic capacitors tied to a good ground plane. 3427fa ## APPLICATIONS INFORMATION Figure 1. Recommended Component Placement for a Single Layer Board. Traces Carrying High Current are Direct (GND, SW, V_{IN} , V_{OUT}). Trace Area at FB is Kept Low. Lead Length to Battery Should be Kept Short. V_{IN} and V_{OUT} Ceramic Capacitors Should be as Close to the LTC3427 as Possible. A Multilayer Board with a Separate Ground Plane is Ideal, but not Absolutely Necessary #### COMPONENT SELECTION #### **Inductor Selection** The LTC3427 can utilize small surface mount and chip inductors due to its fast 1.25MHz switching frequency. A minimum inductance value of $3.3\mu H$ is necessary for 3.6V and lower voltage applications and a $4.7\mu H$ for output voltages greater than 3.6V. Larger values of inductance will allow greater output current capability by reducing the inductor ripple current. Increasing the inductance above $10\mu H$ will increase size while providing little improvement in output current capability. The approximate output current capability of the LTC3427 vs Inductance value is given below in Equation 1 and illustrated graphically in Figure 2. $$I_{OUT(MAX)} = n \bullet \left(I_P - \frac{V_{IN} \bullet D}{f \bullet L \bullet 2} \right) \bullet (1 - D)$$ (1) where: n = estimated efficiency I_P = peak current limit value (0.5A min) V_{IN} = input (battery) voltage $D = steady-state duty ratio = (V_{OUT} - V_{IN})/V_{OUT}$ f = switching frequency (1.25MHz typical) L = inductance value The inductor current ripple is typically set for 20% to 40% of the maximum inductor current (I_P). High frequency ferrite core inductor materials reduce frequency dependent power losses compared to cheaper powdered iron types, improving efficiency. The inductor should have low ESR (series resistance of the windings) to reduce the I^2R power losses, and must be able to handle the peak inductor current without saturating. Molded chokes and some chip inductors usually do not have enough core to support the peak inductor currents of greater than 500mA seen on the LTC3427. To minimize radiated noise, use a toroid, pot core or shielded bobbin inductor. See Table 1 for suggested suppliers. #### **Output and Input Capacitor Selection** Low ESR (equivalent series resistance) capacitors should be used to minimize the output voltage ripple. Multilayer ceramic capacitors are an excellent choice as they have extremely low ESR and are available in small footprints. A 2.2 μ F to 10 μ F output capacitor is sufficient for most applications. Larger values up to 22 μ F may be used to obtain extremely low output voltage ripple and improve transient response. An additional phase lead capacitor may be required with output capacitors larger than 10 μ F to maintain acceptable phase margin. X5R and X7R dielectric materials are preferred for their ability to maintain capacitance over wide voltage and temperature ranges. ## APPLICATIONS INFORMATION **Table 1. Inductor Vendor Information** | SUPPLIER | PHONE | FAX | WEBSITE | |----------------|--|--|---| | Murata | USA: (814) 237-1431
(800) 831-9172 | USA: (814) 238-0490 | www.murata.com | | Sumida | USA: (847) 956-0666
Japan: 81-3-3607-5111 | USA: (847) 956-0702
Japan: 81-3-3607-5144 | www.sumida.com | | Coilcraft | (847) 639-6400 | (847) 639-1469 | www.coilcraft.com | | CoEv Magnetics | (800) 227-7040 | (650) 361-2508 | www.circuitprotection.com/magnetics.asp | | TDK | (847) 803-6100 | (847) 803-6296 | www.component.tdk.com | | ТОКО | (847) 297-0070 | (847) 669-7864 | www.toko.com | | Wurth | (201) 785-8800 | (201) 785-8810 | www.we-online.com | Figure 2. Maximum Output Current vs Inductance Based on 90% Efficiency Low ESR input capacitors reduce input switching noise and reduce the peak current drawn from the battery. It follows that ceramic capacitors are also a good choice for input decoupling and should be located as close as possible to the device. A $2.2\mu F$ input capacitor is sufficient for virtually any application. Larger values may be used without limitations. Table 2 shows a list of several ceramic capacitor manufacturers. Consult the manufacturers directly for detailed information on their entire selection of ceramic capacitors. **Table 2. Capacitor Vendor Information** | SUPPLIER | PHONE | FAX | WEBSITE | |----------------|--|------------------------|---------------------------| | AVX | (803) 448-9411 | (803) 448-1943 | www.avxcorp.com | | Sanyo | (619) 661-6322 | (619) 661-1055 | www.sanyovideo.com | | TDK | (847) 803-6100 | (847) 803-629 | www.component.
tdk.com | | Murata | USA:
(814) 237-1431
(800) 831-9172 | USA:
(814) 238-0490 | www.murata.com | | Taiyo
Yuden | (408) 573-4150 | (408) 573-4159 | www.t-yuden.com | #### **Thermal Considerations** To deliver the power that the LTC3427 is capable of, it is imperative that a good thermal path be provided to dissipate the heat generated within the package. This can be accomplished by taking advantage of the large thermal pad on the underside of the LTC3427. It is recommended that multiple vias in the printed circuit board be used to conduct heat away from the LTC3427 and into the copper plane with as much area as possible. In the event that the junction temperature gets too high, the LTC3427 will go into thermal shutdown and all switching will stop until the internal temperature drops at which point a soft-start cycle will be initiated. ## APPLICATIONS INFORMATION #### $V_{IN} > V_{OUT}$ Operation The LTC3427 will maintain voltage regulation when the input voltage is above the output voltage. This is achieved by terminating the switching of the synchronous P-channel MOSFET and applying V_{IN} statically on its gate. This will ensure the volt • seconds across the inductor reverse during the time current is flowing to the output. Since this mode will dissipate more power in the LTC3427, the maximum output current is limited in order to maintain an acceptable junction temperature and is given by: $$I_{OUT(MAX)} = \frac{125 - T_A}{85 \bullet \lceil (V_{IN} + 1.5) - V_{OUT} \rceil}$$ where T_A = ambient temperature. For example at V_{IN} = 4.5V, V_{OUT} = 3.3V, and T_A = 85°C, the maximum output current is 145mA. #### **Short-Circuit Protection** The LTC3427 output disconnect feature allows output short circuit while maintaining a maximum internally set current limit. However, the LTC3427 also incorporates internal features such as current limit foldback and thermal shutdown for protection from an excessive overload or short circuit. During a prolonged short circuit the current limit folds back to a typical value of approximately 400mA should V_{OUT} drop below 950mV. This 400mA current limit remains in effect until V_{OUT} exceeds approximately 1V, at which time the nominally internally set current limit is restored. # TYPICAL APPLICATIONS Figure 3. 2-Cell Alkaline to 3.3V Synchronous Boost Converter Figure 4. 2-Cell Alkaline to 5V Synchronous Boost Converter with Output Disconnect #### Li-Ion to 5V Synchronous Boost Converter #### Li-lon to 5V Efficiency 3427fa ## PACKAGE DESCRIPTION #### DC Package 6-Lead Plastic DFN (2mm × 2mm) (Reference LTC DWG # 05-08-1703) RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS #### NOTE: - 1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WCCD-2) 2. DRAWING NOT TO SCALE - 3. ALL DIMENSIONS ARE IN MILLIMETERS 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE - 5. EXPOSED PAD SHALL BE SOLDER PLATED - 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE # **RELATED PARTS** | DESCRIPTION | COMMENTS | |--|---| | 800mA I _{SW} , 1.4MHz, Step-Up DC/DC Converter | $V_{IN}\!\!: 1.1V$ to 10V, $V_{OUT(MAX)}=34V,$ $I_Q=3mA,$ $I_{SD}<1\mu A,$ 5-Lead SOT-23 Package | | 350mA I _{SW} , Micropower, Step-Up DC/DC Converter | V_{IN} : 1.2V to 15V, $V_{OUT(MAX)}$ = 34V, I_Q = 20μA, I_{SD} < 1μA, ThinSOT [™] Package | | 1.5A I _{SW} , 1.4MHz, Constant Current/Constant Voltage
Step-Up DC/DC Converter | V_{IN} : 1.6V to 18V, $V_{OUT(MAX)}$ = 35V, I_Q = 1.8mA, I_{SD} < 1 μA , DFN, MSOP Packages | | 1A I _{SW} , 1.2MHz/2.2MHZ, Step-Up DC/DC Converters | $V_{IN}\!\!:$ 2.6V to 16V, $V_{OUT(MAX)}$ = 34V, I_Q = 4.2mA/5.5mA, I_{SD} < 1 μ A, ThinSOT Package | | 600mA I _{SW} , 1.2MHz, Synchronous Step-Up
DC/DC Converters | 92% Efficiency V_{IN} : 0.85V to 5V, $V_{OUT(MAX)}$ = 5V, I_Q = 19μA/300μA, I_{SD} < 1μA, ThinSOT Package | | 1A I _{SW} , 3MHz, Synchronous Step-Up DC/DC Converter | 97% Efficiency V _{IN} : 0.5V to 5V, V _{OUT(MAX)} = 6V, I _Q = 38 μ A, I _{SD} < 1 μ A, 10-Lead MS Package | | 2A I _{SW} , 3MHz, Synchronous Step-Up DC/DC Converter | 97% Efficiency V _{IN} : 0.5V to 5V, V _{OUT(MAX)} = 6V, I _Q = 38 μ A, I _{SD} < 1 μ A, 10-Lead MS Package | | 3A I _{SW} , 3MHz, Synchronous Step-Up
DC/DC Converter with Output Disconnect | 95% Efficiency V_{IN} : 0.5V to 4.5V, $V_{OUT(MAX)}$ = 5.25V, I_Q = 12 μ A, I_{SD} < 1 μ A, QFN24 Package | | 1.5A I _{SW} , 3MHz Synchronous Step-Up
DC/DC Converter with Output Disconnect | 95% Efficiency V _{IN} : 0.5V to 4.5V, V _{OUT(MAX)} = 5.25V, I _Q = 25 μ A, I _{SD} < 1 μ A, 3mm × 3mm DFN Package | | 1A/2A I _{SW} , 3MHz, Synchronous Step-Up DC/DC Converter | 95% Efficiency V_{IN} : 0.5V to 5.5V, $V_{OUT(MAX)}$ = 5.5V, I_Q = 38 μ A, I_{SD} < 1 μ A, 10-Lead MS Package | | 2A I _{SW} , 1.2MHz, Step-Up DC/DC Converter | 92% Efficiency V _{IN} : 1.6V to 4.3V, V _{OUT(MAX)} = 5V, I _{SD} < 1 μ A, SOT-23 Package | | 500mA I _{SW} , 1.25MHz/2.5MHz, Synchronous Step-Up
DC/DC Converters with Output Disconnect | 92% Efficiency V _{IN} : 1.8V to 5V, V _{OUT(MAX)} = 5.25V, I _{SD} < 1 μ A, 2mm \times 2mm DFN Package | | 600mA I _{SW} , 500kHz, Synchronous Step-Up DC/DC
Converter with Output Disconnect and Soft-Start | 96% Efficiency V_{IN} : 0.5V to 4.4V, $V_{OUT(MAX)}$ = 5V, I_Q = 20μ A/300 μ A, I_{SD} < 1μ A, ThinSOT Package | | 1.4A I _{SW} , 1.5MHz, Synchronous Step-Up DC/DC
Converter/Output Disconnect/Burst Mode Operation | 93% Efficiency V_{IN} : 1.5V to 6V, $V_{OUT(MAX)}$ = 7.5V, I_Q = 15 μ A, I_{SD} < 1 μ A, DFN12 Package | | 1.7A I _{SW} , 1.5MHz, Synchronous Step-Up DC/DC Converter with Output Disconnect, Automatic Burst Mode® Operation | 94% Efficiency V _{OUT(MAX)} = 6V, I _Q = 12μA, DFN12 Package | | 70mA I _{SW} , 10V Micropower Synchronous Boost
Converter/Output Disconnect/Burst Mode Operation | $V_{IN}\!\!: 1.5V$ to 5.5V, $V_{OUT(MAX)}$ = 10V, I_Q = 10 μ A, I_{SD} < 1 μ A, ThinSOT Package | | 400mA Micropower Synchronous Step-Up
DC/DC Converter with Output Disconnect | 95% Efficiency V_{IN} : 1V to 4.5V, $V_{OUT(MAX)}$ = 3.3V or 5V, I_Q = $7\mu A$, I_{SD} < $1\mu A$, SC-70 Package | | | 800mA I _{SW} , 1.4MHz, Step-Up DC/DC Converter 350mA I _{SW} , Micropower, Step-Up DC/DC Converter 1.5A I _{SW} , 1.4MHz, Constant Current/Constant Voltage Step-Up DC/DC Converter 1A I _{SW} , 1.2MHz/2.2MHZ, Step-Up DC/DC Converters 600mA I _{SW} , 1.2MHz, Synchronous Step-Up DC/DC Converters 1A I _{SW} , 3MHz, Synchronous Step-Up DC/DC Converter 2A I _{SW} , 3MHz, Synchronous Step-Up DC/DC Converter 3A I _{SW} , 3MHz, Synchronous Step-Up DC/DC Converter 1.5A I _{SW} , 3MHz Synchronous Step-Up DC/DC Converter with Output Disconnect 1.5A I _{SW} , 3MHz Synchronous Step-Up DC/DC Converter with Output Disconnect 1A/2A I _{SW} , 3MHz, Synchronous Step-Up DC/DC Converter 2A I _{SW} , 3MHz, Synchronous Step-Up DC/DC Converter 500mA I _{SW} , 1.25MHz, Synchronous Step-Up DC/DC Converter with Output Disconnect 600mA I _{SW} , 500kHz, Synchronous Step-Up DC/DC Converter with Output Disconnect and Soft-Start 1.4A I _{SW} , 1.5MHz, Synchronous Step-Up DC/DC Converter/Output Disconnect/Burst Mode Operation 1.7A I _{SW} , 1.5MHz, Synchronous Step-Up DC/DC Converter/Output Disconnect, Automatic Burst Mode® Operation 70mA I _{SW} , 10V Micropower Synchronous Boost Converter/Output Disconnect/Burst Mode Operation 400mA Micropower Synchronous Step-Up | ThinSOT is a trademark of Linear Technology Corporation. Burst Mode is a registered trademark of Linear Technology Corporation.