
Contents

1	Block diagram	3
2	Pin settings	3
	2.1 Pin connection	3
	2.2 Pin description	4
3	Electrical data	5
	3.1 Maximum ratings	5
	3.2 Thermal data	5
4	Electrical characteristics	6
5	Evaluation board	9
6	Application circuit 1	2
7	Typical characteristics 1	3
8	Application ideas 2	1
9	Package mechanical data 2	3
10	Order code	6
11	Revision history	7

1 Block diagram

2 Pin settings

2.1 Pin connection

Figure 3. Pin connection (top view) OSC 🗋 SYNC 20 1 SYNC OSC [1 18 OUT 2 19 SS \square OUT ∃ ss 2 17 OUT З 18 V5.1 \square \square OUT 3 16 V5.1 GND GND 4 17 GND [4 15 GND GND 5 16 GND \square \Box GND 5 14 GND GND GND 6 15 GND [GND 6 13 GND 7 14 GND \Box V_{CC} [7 12 VFB VFB V_{CC} \Box 8 13 Т 8 COMP V_{CC} 11 V_{CC} 9 12 \Box COMP BOOT 9 10 INH воот 🗖 INH 10 11 \square D94IN162A D94IN163A DIP -18 (12+3+3) SO20 (12+4+4)

2.2 Pin description

Table 1.	Pin de	escription
----------	--------	------------

N°	' Pin	N	Description	
DIP-18	SO-20	Name	Description	
11	12	COMP	E/A output to be used for frequency compensation	
10	11	INH	A logic signal (active high) disables the device (sleep mode operation). If not used it must be connected to GND; if floating the device is disabled.	
9	10	BOOT	A capacitor connected between this pin and the output allows to drive the internal D-MOS.	
18	20	SYNC	Input/Output synchronization.	
7,8	8,9	V _{CC}	Unregulated DC input voltage	
2,3	2,3	OUT	Stepdown regulator output.	
12	13	VFB	Stepdown feedback input. Connecting the output directly to this pin results in an output voltage of 3.3 V for the L4973V3.3 and 5.1 V for L4973V5.1. An external resistive divider is required for higher output voltages. For output voltage resistive divider is required for higher output voltages. For output voltage . For output voltage less than 3.3 V, see <i>Note: 1</i> and <i>Figure 33</i> .	
16	18	V5.1	Reference voltage externally available.	
4,5,6 13,14,15	4,5,6,7 14,15,16,17	GND	Signal ground	
1	1	OSC	An external resistor connected between the unregulated input voltage and Pin 1 and a capacitor connected from Pin 1 to ground fixes the switching frequency. (Line feed forward is automatically obtained)	

Note: 1 The maximum power dissipation of the package must be observed.

3 Electrical data

3.1 Maximum ratings

Symbol		Demonster	Malua	
DIP-18	S0-20	Parameter	Value	Unit
V ₇ ,V ₈	V ₉ ,V ₈	Input voltage	58	V
V ₂ ,V ₃	V ₂ ,V ₃	Output DC voltage Output peak voltage at t = 0.1 μ s f = 200 kHz	-1 - 5	V V
l ₂ ,l ₃	I ₂ ,I ₃	Maximum output current	int. I	imit.
V ₉ -V ₈	V ₁₀ -V ₈		14	V
V ₉	V ₁₀	Bootstrap voltage	70	V
V ₁₁	V ₁₂	Analogs input voltage (V _{CC} = 24 V)	12	V
V ₁₇	V ₁₉	Analogs input voltage (V _{CC} = 24 V)	13	V
V ₁₂	V ₁₃	(V _{CC} = 20 V)	6 -0.3	V V
V ₁₈	V ₂₀	(V _{CC} = 20 V)	5.5 0.3	V V
V ₁₀	V ₁₁	Inhibit	V _{CC} -0.3	V V
P _{tot}		DIP 12+3+3 Power dissipation a Tpins \leq 90 °C (T _A = 70 °C no copper area) (T _A = 70 °C 4 cm copper area on PCB)	5 1.3 2	W W W
		SO-20 Power dissipation a T _{pins} = 90 °C	4	w
T _J ,T	Г _{STG}	Junction and storage temperature	-40 to 150	°C

Table 2. Absolute maximum ratings

3.2 Thermal data

Table 3. Thermal data

Symbol	Parameter	DIP-18	SO-20	Unit
R _{thJP}	Maximum thermal resistance junction-pin	12	15	°C/W
R _{thJA}	Maximum thermal resistance junction-ambient	60 ⁽¹⁾	80 ⁽¹⁾	°C/W

1. Package mounted on board

4 Electrical characteristics

Table 4. Electrical characteristics

(Refer to the test circuit,V_{CC} = 24 V; T_J = 25 °C, C_{OSC} = 2.7 nF; R_{OSC} = 20 k Ω ; unless otherwise specified)

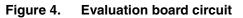
Symbol	Parameter	Test condition		Min	Тур	Max	Unit
Dynamic	characteristics			L			
	Input voltage range (1)	$V_{O} = V_{REF}$ to 40 V; $I_{O} = 3.5A$	(2)	8		55	V
		I _O = 1 A		5.05	5.1	5.15	V
	Output voltage L4973V5.1	$I_0 = 0.5 \text{ A to } 3.5 \text{ A V}_{CC} = 8 \text{ V}$		5.00	5.1	5.20	V
		to 55 V	(2)	4.95	5.1	5.25	V
		I _O = 1 A		3.326	3.36	3.393	V
	Output voltage L4973V3.3	$I_0 = 0.5 \text{ A to } 3.5 \text{ A V}_{CC} = 8 \text{ V}$		3.292	3.36	3.427	V
		$I_{\rm O} = 0.5 \text{ A to } 3.5 \text{ A V}_{\rm CC} = 8 \text{ V}$ to 40 V (2)		3.26	3.36	3.46	V
	D	V _{CC} = 10.5 V I _O = 3.5 A			0.15	0.22	Ω
	R _{DS(on)}	$v_{\rm CC} = 10.5 \ v_{10} = 5.5 \ {\rm A}$	(2)			0.35	Ω
	Maximum limiting	$V_{\rm CC} = 8 \text{ V to 55 V}$		3.8	4.5	5.5	А
	current			4	4.5	5.5	А
12	Efficiency	V _O = 5.1 V; I _O = 3.5 A			90		%
η	Efficiency	V _O = 3.3 V; I _O = 3.5 A			85		%
	Switching frequency		(2)	90	100	110	kHz
	Supply voltage ripple rejection	$ V_i = V_{CC} + 2 V_{RMS} V_O = V_{ref}; $		60			dB
Δf_{sw}	Switching frequency stability vs., supply voltage	$V_{CC} = 8 V \text{ to } 55 V$			2	5	%
Reference	ce section						
	Deference voltage	$I_{ref} = 0$ to 20 mA;		5.025	5.1	5.175	V
	Reference voltage	V _{CC} = 8 to 55 V	(2)	4.950	5.1	5.250	V
	Line regulation	I _{ref} = 0 mA; V _{CC} = 8 to 55 V			5	10	mV
	Load regulation	$V_{ref} = 0$ to 5 mA; $V_{CC} = 0$ to 20 mA			2 6	10 25	mV mV
	Short circuit current			30	65	100	mA

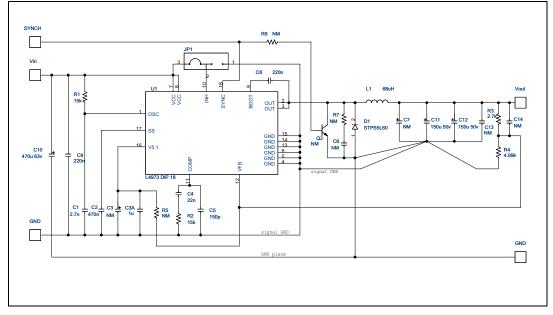
Table 4.Electrical characteristics (continued)
(Refer to the test circuit, V_{CC} = 24 V; T_J = 25 °C, C_{OSC} = 2.7 nF;
 R_{OSC} = 20 k Ω ; unless otherwise specified)

Symbol	Parameter	Test condition		Min	Тур	Max	Unit
Soft-star	t						
	Soft-start charge current			30	45	60	μA
	Soft-start discharge current			15	22	30	μA
Inhibit							
	High level voltage		(2)	3.0			V
	Low level voltage		(2)			0.8	V
	I _{source} high level	V _{INH} = 3 V	(2)	10	16	50	μA
	I _{source} low level	V _{INH} = 0.8 V	(2)	10	15	50	μA
DC chara	acteristics						
	Total operating quiescent current	Duty cycle = 50 %			4	6	mA
	Quiescent current	Duty cycle = 0			2.7	4	mA
	Total stand-by quiescent	V _{CC} = 24 V; V _{INH} = 5 V			100	200	μA
	current	V _{CC} = 55 V; V _{INH} = 5 V			150	300	μA
Error am	plifier						
	High level output voltage			11.0			V
	Low level output voltage					0.65	V
	Source bias current			1	2	3	μA
	Source output current			200	300	600	μA
	Sink output current			200	300		μA
	Supply voltage ripple rejection	$V_{COMP} = VFB$ $C_{REF} = 4.7 \ \mu F$ 1-5 mA load current		60	80		dB
	DC open loop gain	$R_L = \infty$		50	60		dB
	Transconductance	$I_{comp} = -0.1$ to 0.1 mA; $V_{comp} = 6$ V			2.5		mS
Oscillato	or section					-	
	Ramp valley			0.78	0.85	0.92	V
	Pamp poak	V _{CC} = 8 V		1.9	2.1	2.3	V
	Ramp peak	V _{CC} = 55 V		9	9.6	10.2	V
	Maximum duty cycle			95	97		%

Downloaded from Arrow.com.

Table 4.Electrical characteristics (continued)
(Refer to the test circuit, $V_{CC} = 24 \text{ V}$; $T_J = 25 \text{ °C}$, $C_{OSC} = 2.7 \text{ nF}$;
 $R_{OSC} = 20 \text{ k}\Omega$; unless otherwise specified)


Symbol	Parameter	Test condition	Min	Тур	Max	Unit
	Maximum frequency	Duty cycle = 0%; R_{OSC} =13 k Ω ; C_{OSC} = 820 pF;			300	kHz
Sync fun	ction					
	High input voltage	V _{CC} = 8 V to 55 V	3.5			V
	Low input voltage	V _{CC} = 8 V to 55 V			0.9	V
	Slave sink current		0.15	0.25	0.45	mA
	Master output amplitude	I _{source} = 3 mA	4	4.5		V
	Output pulse width	No load, $V_{sync} = 4.5 V$	0.20	0.35		μs


1. Pulse testing with a low duty cycle

2. Specifications referred to T_J from -40 $^\circ C$ to 125 $^\circ C.$

5 Evaluation board

Table 5.Component list (fsw = 150 kHz, V_{OUT} = 5 V)

Reference	Description	Part number	Manufacturer
R1	Resistor 15 kΩ 1%		
R2	Resistor 15 kΩ 1%		
R3	Resistor 2.7 kΩ 1%		
R4	Resistor 4.99 kΩ 1%		
R5	Not mounted		
R6	Not mounted		
R7	Not mounted		
C1	Capacitor 2.7 nF 5%		
C2	Capacitor 470 nF 5%		
C3	Capacitor 1 µF 5%		
C4	Capacitor 22 nF 5%		
C5	Capacitor 150 pF 5%		
C6	Not mounted		
C7	Not mounted		
C8	Capacitor 220 nF 5%		
C9	Capacitor 220 nF 5%		
C10	Capacitor 470 µF 63V	EKY-630ELL471ML20S	Nippon Chemi-con

	$\frac{1}{100} = \frac{1}{100} \times \frac{1}$						
Reference	Description	Part number	Manufacturer				
C11	Capacitor 150 μ F 35 V	EKY-350ELL151MHB5D	Nippon Chemi-con				
C11	Capacitor 150 μ F 35 V	EKY-350ELL151MHB5D	Nippon Chemi-con				
C13	Capacitor 100 nF 5 %						
C14	Not mounted						
L1	$68 \ \mu H \ I_{RMS} = 3.4 \ A \ I_{SAT} = 6.7 \ A$	DO5040H-683MLD	Coilcraft				
U1		L4973V3.3	STMicroelectronics				

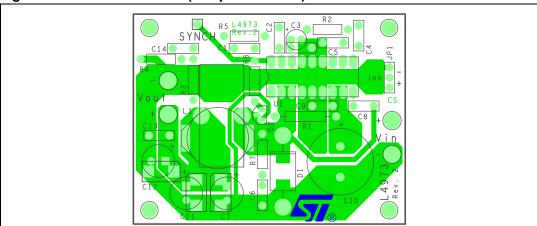
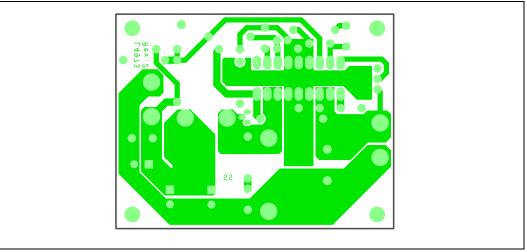
Table 5.Component list (fsw = 150 kHz, $V_{OUT} = 5 V$) (continued)

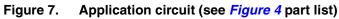
Table 6.Resistor divider for V_{OUT} = 12 V

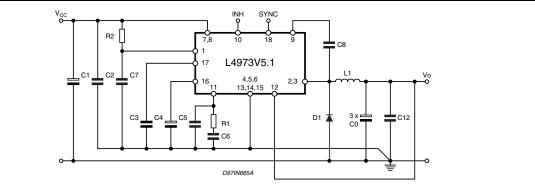
Reference	Description	Part number	Manufacturer
R3	Resistor 2.7 k Ω 1%		
R4	Resistor 1 kΩ 1%		

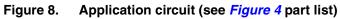
Table 7. Resistor divider for $V_{OUT} = 3.3 V$

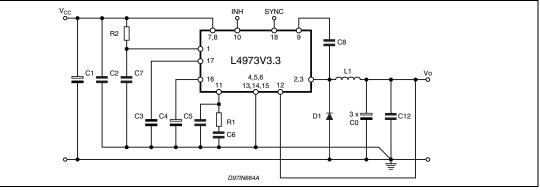
Reference	Description	Part number	Manufacturer
R3	Resistor 2.7 k Ω 1%		
R4	Not mounted		


Figure 5. Evaluation board (components side)


Figure 6. Evaluation board (solder side)





6 Application circuit

7 Typical characteristics

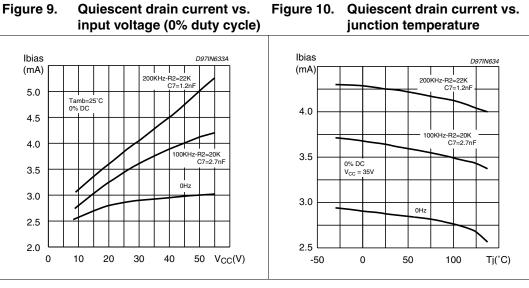
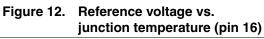
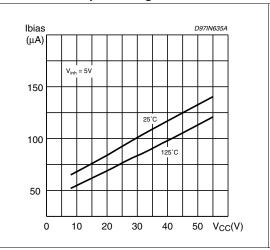




Figure 11. Stand by drain current vs. input voltage

VREF D97IN637 (V) 5.15 5.15 5.05 5.0 -40 -20 0 20 40 60 80 100 Tj(°C)

50 V_{CC}(V)

D97IN651

Figure 15. Inhibit current vs. inhibit voltage (pin 10)

20

30

40

Tj=0°C

TH25C

Tj=125°C

15

Vinh(V)

5.0

linh

(µA)

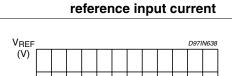
100

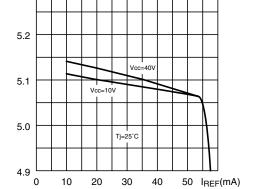
50

0

-50

0


0


10

Vcc=35V Pin 10

5

10

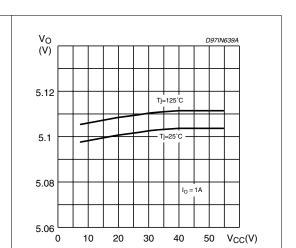


Figure 16. Line regulation (see *Figure 7*)

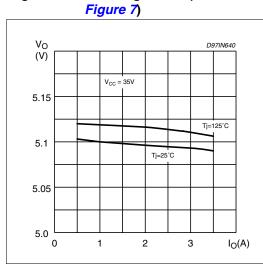


Figure 17. Load regulation (see

Figure 18. Line regulation (see *Figure 8*)

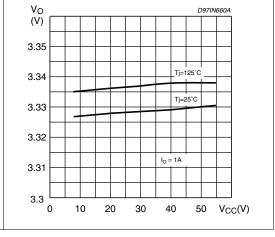
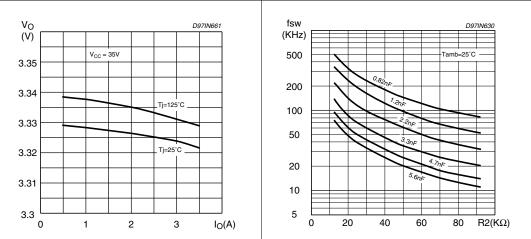
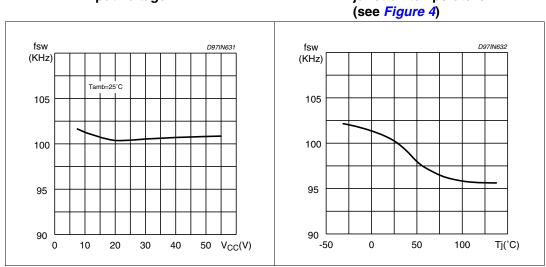
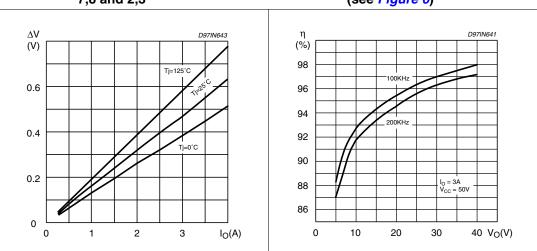




Figure 19. Load regulation (see *Figure 4*)


57

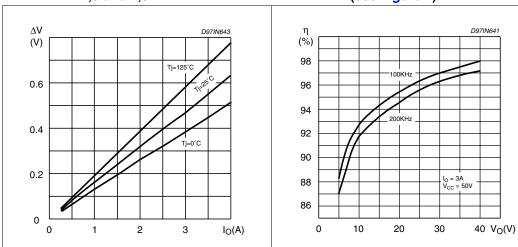
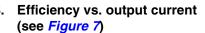
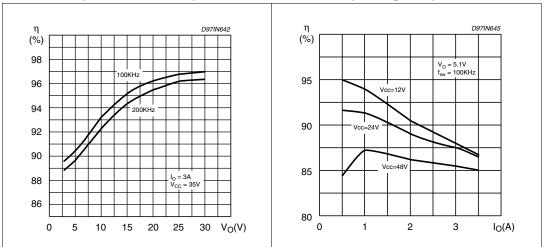


Figure 21. Switching frequency vs. input voltage


Figure 23.Dropout voltage between pinFigure 24.Efficiency vs. output voltage7,8 and 2,3(see Figure 6)



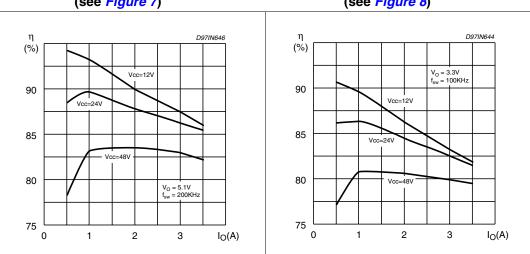
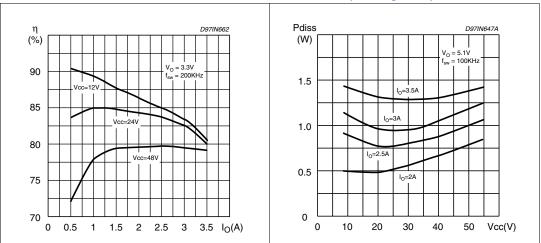

Dropout voltage between pin Figure 26. Efficiency vs. output voltage Figure 25. 7,8 and 2,3 (see Figure 4)

Figure 27. Efficiency vs. output voltage Figure 28. Efficiency vs. output current (Diode STPS745D)



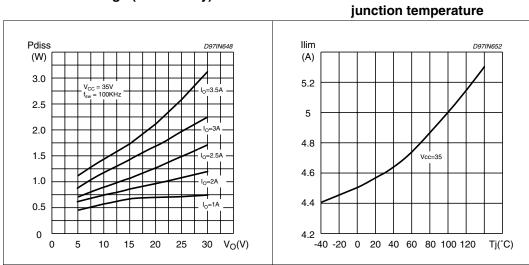
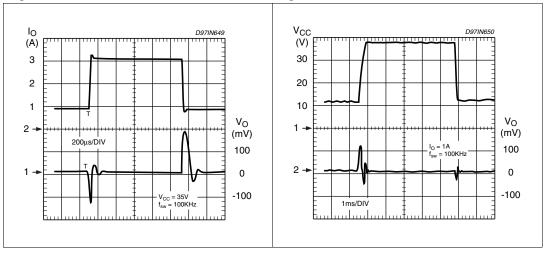
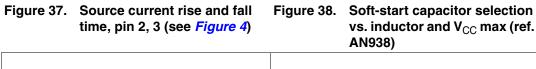


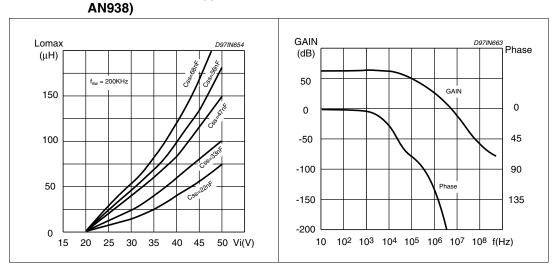
Figure 29. Efficiency vs. output current Figure 30. Efficiency vs. output current (see *Figure 7*) (see *Figure 8*)

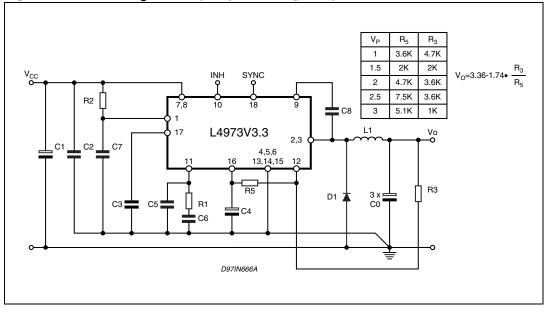
Figure 31. Efficiency vs. output current Figure 32. (see *Figure 8*)

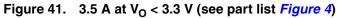
. Power dissipation vs. input voltage (device only) (see *Figure 7*)

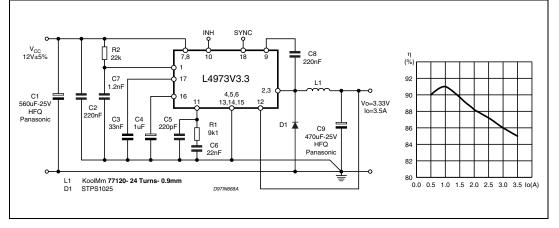



Figure 33.Power dissipation vs. output
voltage (device only)Figure 34.Pulse by pulse limiting
current vs.

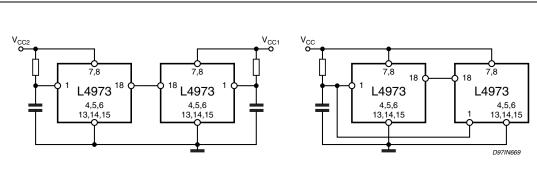



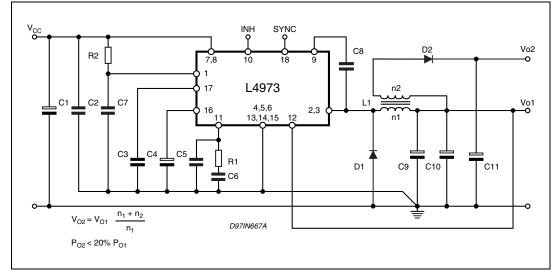

Figure 39. Soft-start capacitor selection Figure 40. vs. inductor and V_{CC} max (ref.





8 Application ideas

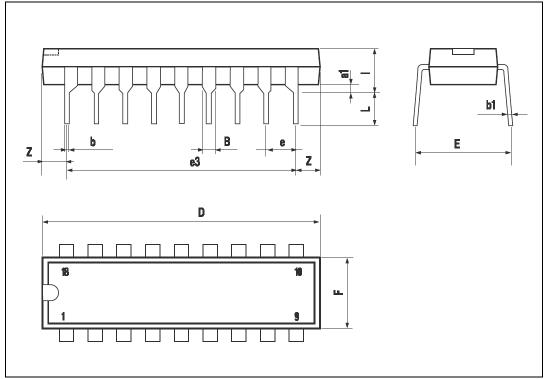




57

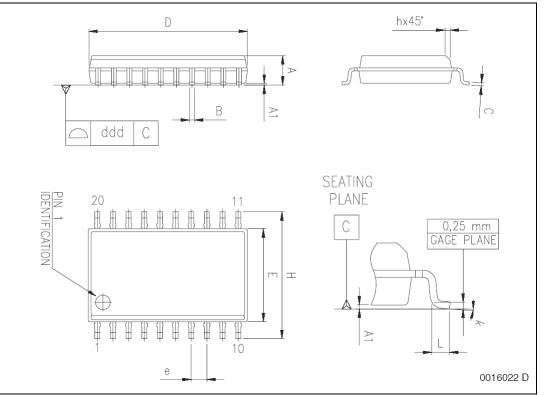
L4973

9 Package mechanical data


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Dim.	mm.			inch		
	Min	Тур	Max	Min	Тур	Мах
a1	0.51			0.020		
В	0.85		1.40	0.033		0.055
b		0.50			0.020	
b1	0.38		0.50	0.015		0.020
D			24.80			0.976
E		8.80			0.346	
е		2.54			0.100	
e3		20.32			0.800	
F			7.10			0.280
I			5.10			0.201
L		3.30			0.130	
Z			2.54			0.100

Table 8.DIP-18 mechanical data



Dim.	mm.			inch		
	Min	Тур	Max	Min	Тур	Max
A	2.35		2.65	0.093		0.104
A1	0.10		0.30	0.004		0.012
В	0.33		0.51	0.013		0.200
С	0.23		0.32	0.009		0.013
D (1)	12.60		13.00	0.496		0.512
E	7.40		7.60	0.291		0.299
е		1.27			0.050	
Н	10.0		10.65	0.394		0.419
h	0.25		0.75	0.010		0.030
L	0.40		1.27	0.016		0.050
k		0° (min.), 8° (max.)				
ddd			0.10			0.004

Table 9. SO-20 mechanical data

Figure 46. Package dimensions

10 Order code

Table 10. Order code

Part number	Package	Packaging
L4973D3.3, E-L4973D3.3	SO-20	Tube
L4973D3.3-013TR, E-L4973D3.3-TR	SO-20	Tape and reel
L4973D5.1	SO-20	Tube
L4973D5.1-013TR	SO-20	Tape and reel
L4973V3.3, E-L4973V3.3	DIP-18	Tube
L4973V5.1, E-L4973V5.1	DIP-18	Tube

11 Revision history

Table 11. Document revision history

Date	Revision	Changes
12-Sep-2001	13	First Issue
07-May-2005	14	Updated the Layout look & feel. Changed name of the D1 on the fig. 5.
14-Dec-2005	15	Added the ECOPACK part numbers in the Table 1. Order Codes.
06-Dec-2006	16	The document has been reformatted, and order codes updated
07-May-2007	17	New data on Table 4
26-Feb-2009	18	Updated Section 5: Evaluation board on page 9

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

