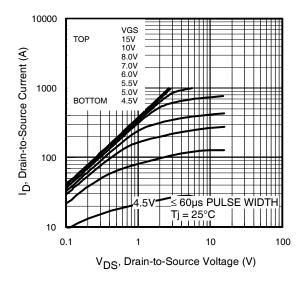
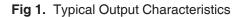
International **TOR** Rectifier

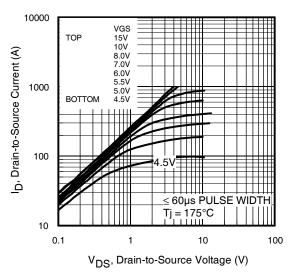
Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_{D} = 250 \mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	_	0.028		V/°C	Reference to 25° C, $I_{D} = 1$ mA
R _{DS(on)} SMD	Static Drain-to-Source On-Resistance		1.2	1.6	mΩ	V _{GS} = 10V, I _D = 160A ③
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$
gfs	Forward Transconductance	220			S	$V_{DS} = 10V, I_{D} = 160A$
I _{DSS}	Drain-to-Source Leakage Current	_		20	μA	$V_{DS} = 40V, V_{GS} = 0V$
				250		$V_{DS} = 40V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage	_		200	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage	_		-200	Ī	V _{GS} = -20V
Q _g	Total Gate Charge	_	170	260	nC	I _D = 160A
Q _{gs}	Gate-to-Source Charge		63		I	V _{DS} = 32V
Q _{gd}	Gate-to-Drain ("Miller") Charge	_	71		Ī	V _{GS} = 10V ③
t _{d(on)}	Turn-On Delay Time		17		ns	$V_{DD} = 20V$
tr	Rise Time		150			I _D = 160A
t _{d(off)}	Turn-Off Delay Time		110		Ι	$R_G = 2.6\Omega$
t _f	Fall Time		105			V _{GS} = 10V ②
L _D	Internal Drain Inductance	_	4.5		nH	Between lead,
						6mm (0.25in.)
Ls	Internal Source Inductance		7.5		Ī	from package
						and center of die contact
C _{iss}	Input Capacitance		6930		pF	$V_{GS} = 0V$
C _{oss}	Output Capacitance		1750		Ī	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		970			f = 1.0MHz, See Fig. 5
C _{oss}	Output Capacitance		5740			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		1570			$V_{GS} = 0V, V_{DS} = 32V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		2340			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 32V$

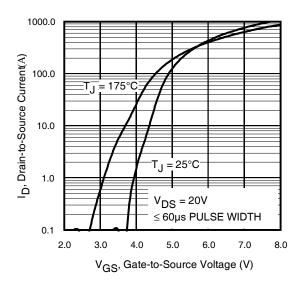
Diode Characteristics


	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			320		MOSFET symbol
	(Body Diode)				А	showing the
I _{SM}	Pulsed Source Current			1360		integral reverse
	(Body Diode) ①					p-n junction diode.
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 160A, V_{GS} = 0V$ (3)
t _{rr}	Reverse Recovery Time		43	65	ns	$T_J = 25^{\circ}C, I_F = 160A, V_{DD} = 20V$
Q _{rr}	Reverse Recovery Charge		48	72	nC	di/dt = 100A/µs


Notes:


- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- 3 Pulse width \leq 1.0ms; duty cycle \leq 2%.
- G C_{oss} eff. is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- ⑤ Limited by T_{Jmax}, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
- ⑤ This value determined from sample failure population. 100% tested to this value in production.
- ⑦ This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.
- $\circledast~\mathsf{R}_{\theta}$ is measured at T_J of approximately 90°C.

International **TOR** Rectifier


IRF2804S-7PPbF

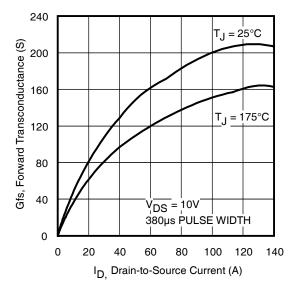
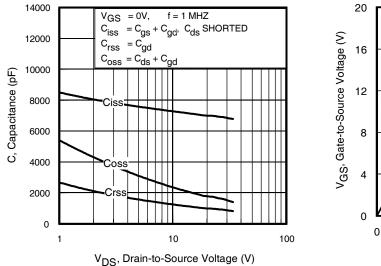
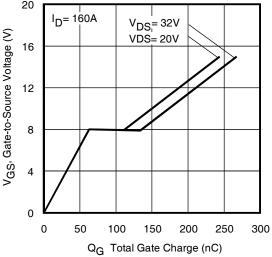
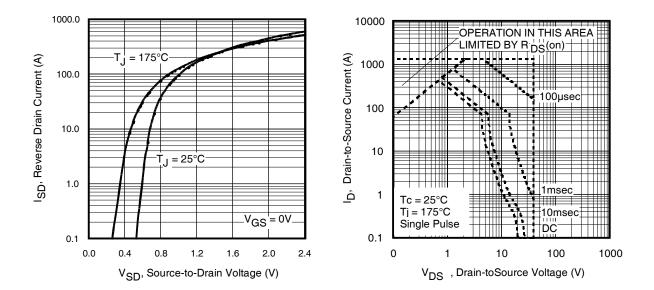
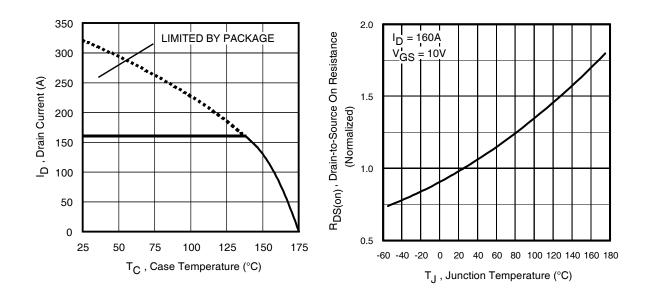




Fig 4. Typical Forward Transconductance vs. Drain Current


International



www.irf.com

4

International **TOR** Rectifier

IRF2804S-7PPbF

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 10. Normalized On-Resistance vs. Temperature

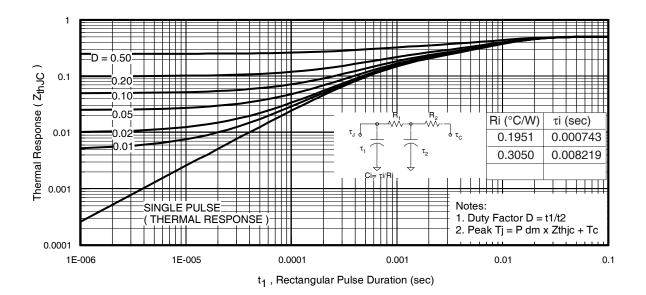


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International **IOR** Rectifier

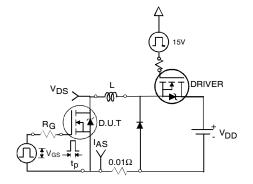
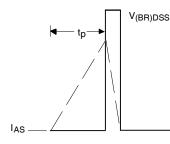
ΙD

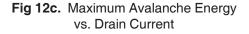
21A

33A

BOTTOM 160A

TOP


Fig 12a. Unclamped Inductive Test Circuit

 $\mathsf{E}_{\mathsf{AS},}$ Single Pulse Avalanche Energy (mJ) 1500 1000 500 0 25 50 75 100 150 175 125 Starting T_J, Junction Temperature (°C)

2500

2000

 Q_G 10 V Q_{GS} Q_{GD} V_{G} Charge

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

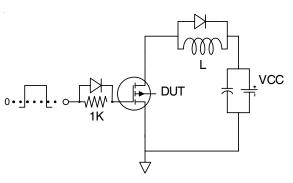
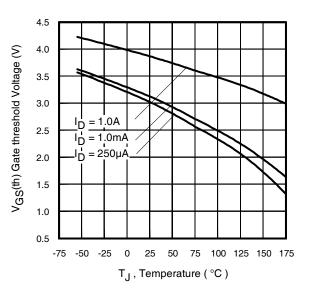



Fig 13b. Gate Charge Test Circuit 6

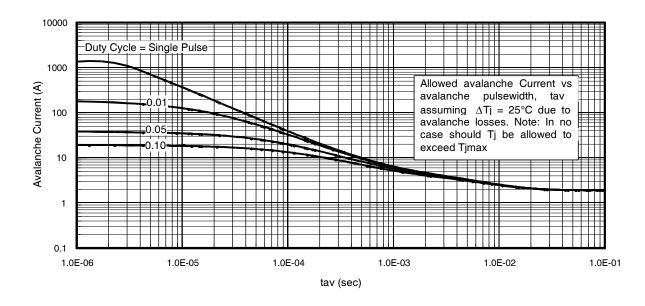
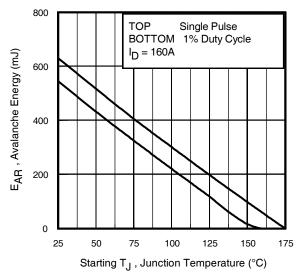
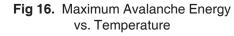
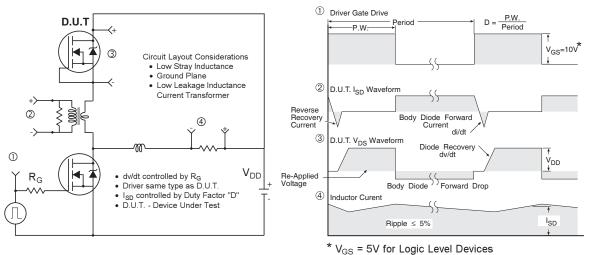




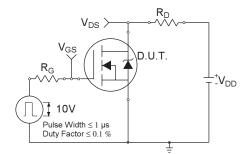
Fig 15. Typical Avalanche Current vs.Pulsewidth

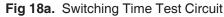
www.irf.com


Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. Iav = Allowable avalanche current.
- 7. Δ T = Allowable rise in junction temperature, not to exceed T_{imax} (assumed as 25°C in Figure 15, 16).
 - $t_{av} = Average time in avalanche.$
 - D = Duty cycle in avalanche = $t_{av} \cdot f$

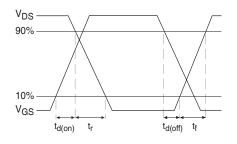
 $Z_{thJC}(D, t_{av}) = Transient thermal resistance, see figure 11)$

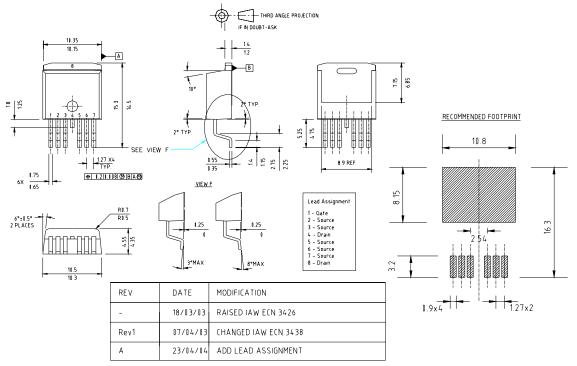

$$\begin{split} \textbf{P}_{D~(ave)} &= 1/2~(~1.3{\cdot}BV{\cdot}I_{av}) = \bigtriangleup T/~Z_{thJC}\\ \textbf{I}_{av} &= 2\bigtriangleup T/~[1.3{\cdot}BV{\cdot}Z_{th}]\\ \textbf{E}_{AS~(AR)} &= \textbf{P}_{D~(ave)}{\cdot}t_{av} \end{split}$$


International

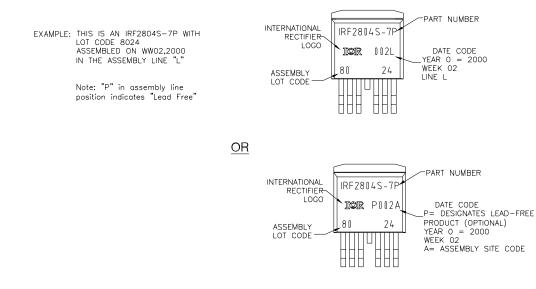
VGS - OV TOT LOGIC LEVEL DEVICE

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET[®] Power MOSFETs




Fig 18b. Switching Time Waveforms

International **TOR** Rectifier


IRF2804S-7PPbF

D²Pak - 7 Pin Package Outline

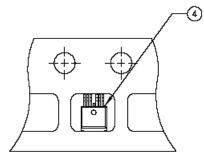
Dimensions are shown in millimeters (inches)

D²Pak - 7 Pin Part Marking Information

Notes:

 1. For an Automotive Qualified version of this part please see
 http://www.irf.com/product-info/datasheets/data/ auirf2804s-7p.pdf

 2. For the most current drawing please refer to IR website at http://www.irf.com/package/


International **TOR** Rectifier

D²Pak - 7 Pin Tape and Reel

NOTES, TAPE & REEL, LABELLING:

- 1. TAPE AND REEL.
 - 1.1 REEL SIZE 13 INCH DIAMETER.
 - 1.2 EACH REEL CONTAINING BOD DEVICES.
 - 1.3 THERE SHALL BE A MINIMUM OF 42 SEALED POCKETS CONTAINED IN THE LEADER AND A MINIMUM OF 15 SEALED POCKETS IN THE TRAILER.
 - 1.4 PEEL STRENGTH MUST CONFORM TO THE SPEC. NO. 71-9667.
 - 1.5 PART ORIENTATION SHALL BE AS SHOWN BELOW.
 - 1.6 REEL MAY CONTAIN A MAXIMUM OF TWO UNIQUE LOT CODE/DATE CODE COMBINATIONS. REWORKED REELS MAY CONTAIN A MAXIMUM OF THREE UNIQUE LOT CODE/DATE CODE COMBINATIONS. HOWEVER, THE LOT CODES AND DATE CODES WITH THEIR RESPECTIVE QUANTITIES SHALL APPEAR ON THE BAR CODE LABEL FOR THE AFFECTED REEL.

- 2. LABELLING (REEL AND SHIPPING BAG).
 - 2.1 CUST. PART NUMBER (BAR CODE): IRF2804STRL-7P
 - 2.2 CUST. PART NUMBER (TEXT CODE): IRF2804STRL-7P
 - 2.3 I.R. PART NUMBER: IRF2804STRL-7P
 - 2.4 QUANTITY:
 - 2.5 VENDOR CODE: IR
 - 2.6 LOT CODE:
 - 2.7 DATE CODE:
 - LABEL ⓓ

Data and specifications subject to change without notice. This product has been designed and gualified for the Industrial market. Qualification Standards can be found on IR's Web site.

> International IOR Recti

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/2010 www.irf.com

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.