
Internal Electrical Schematic - IRAM136-3023B

Absolute Maximum Ratings (Continued)

Symbol	Parameter	Min	Max	Units	Conditions
I_{BDF}	Bootstrap Diode Peak Forward Current		4.5	Α	t _P = 10ms, T _J = 150°C, T _C =100°C
P _{BR Peak}	Bootstrap Resistor Peak Power (Single Pulse)		25.0	W	t _P =100μs, T _C =100°C
V _{S1,2,3}	High side floating supply offset voltage	V _{B1,2,3} - 25	V _{B1,2,3} +0.3	V	
V _{B1,2,3}	High side floating supply voltage	-0.3	150	V	
V _{CC}	Low Side and logic fixed supply voltage	-0.3	20	V	
V_{IN}	Input voltage LIN, HIN, I _{Trip}	-0.3	Lower of (V _{SS} +15V) or V _{CC} +0.3V	٧	

Inverter Section Electrical Characteristics @T_J= 25°C

Symbol	Parameter	Min	Тур	Max	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	150			V	V _{IN} =5V, I _D =250μA
$\Delta V_{(BR)DSS}$ / ΔT	Temperature Coeff. Of Breakdown Voltage		0.16		V/°C	V _{IN} =5V, I _D =1.0mA (25°C - 150°C)
D	Drain-to-Source On Resistance		38	80	mΩ	I _D =15A, V _{CC} =15V
R _{DS(ON)}	Dialii-to-Source Off Resistance		65	122	11175	I _D =15A, V _{CC} =15V, T _J =125°C
T	Zara Cata Valtaga Drain Current		3	80		V _{IN} =5V, V ⁺ =150V
I_{DSS}	Zero Gate Voltage Drain Current		8		μA	V _{IN} =5V, V ⁺ =150V, T _J =125°C
V	Body Diode Forward Voltage		1.2	1.9	V	I _D =15A
V_{SD}	Drop		1.0	1.8		I _D =15A, T _J =125°C
V	Bootstrap Diode Forward			1.25	V	I _F =1A
V_{BDFM}	Voltage Drop			1.10	V	I _F =1A, T _J =125°C
R _{BR}	Bootstrap Resistor Value		22		Ω	T _J =25°C
$\Delta R_{BR}/R_{BR}$	Bootstrap Resistor Tolerance			±5	%	T _J =25°C
I _{BUS_TRIP}	Current Protection Threshold (positive going)	56		68	Α	See Figure 2

Inverter Section Switching Characteristics @ T_J= 25°C

	_			_		
Symbol	Parameter	Min	Тур	Max	Units	Conditions
E _{ON}	Turn-On Switching Loss ^{1/}		395	1100		I _D =15A, V ⁺ =100V
E _{OFF}	Turn-Off Switching Loss ^{1/}		135	250	μĴ	V _{CC} =15V, L=2mH
E _{TOT}	Total Switching Loss ^{1/}		530	1350	μυ	Energy losses include "tail" and diode reverse recovery
E _{REC}	Diode Reverse Recovery energy ^{1/}		210	1000		diode reverse recovery
t _{RR}	Diode Reverse Recovery time ^{1/}		240		ns	See CT1
E _{ON}	Turn-on Swtiching Loss ^{1/}		360	970		I _D =15A, V ⁺ =100V
E _{OFF}	Turn-off Switching Loss ^{1/}		115	210		V _{CC} =15V, L=2mH, T _J =125°C
E _{TOT}	Total Switching Loss ^{1/}		475	1180	μĴ	Energy losses include "tail" and diode reverse recovery
E _{REC}	Diode Reverse Recovery energy ^{1/}		230	1000		diode reverse recovery
t _{RR}	Diode Reverse Recovery time ^{1/}		270		ns	See CT1
Q_G	Turn-On FET Gate Charge ^{1/}		60	89	nC	I _D =36A, V ⁺ =75V, V _{GS} =10V
E _{AS}	Single Pulse Avalanche Energy			470	mJ	Note 3, 4
I _{AR}	Avalanche Current			36	Α	Repetitive rating; pulse width
E _{AR}	Repetitive Avalanche Energy			32	mJ	limited by max. junction temperature. (Note 4)

Note 3: Starting T_J = 25°C, L = 0.72mH, R_G = 25 Ω , I_{AS} = 36A

Note 4: This is only applied to TO-220AB package

Recommended Operating Conditions Driver Function

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. All voltages are absolute referenced to COM/ I_{TRIP} . The V_S offset is tested with all supplies biased at 15V differential (Note 5).

Symbol	Definition	Min	Max	Units
V _{B1,2,3}	High side floating supply voltage	V _S +10	V _S +20	V
V _{S1,2,3}	High side floating supply offset voltage Note 6 150			
V _{CC}	Low side and logic fixed supply voltage	12	20	V
V _{IN}	Logic input voltage LIN, HIN	V _{SS}	V _{SS} +5	V

Note 5: For more details, see IR2136 data sheet

Note 6: Logic operational for V_s from COM-5V to COM+150V. Logic state held for V_s from COM-5V to COM+V_{BS}. (please refer to DT97-3 for more details)

^{1/} Based on Characterization Data only. Not subject to production test.

Static Electrical Characteristics Driver Function @ T_J= 25°C

 V_{BIAS} (V_{CC} , $V_{BS1,2,3}$)=15V, unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to V_{SS} and are applicable to all six channels (Static Electrical Characteristics are Based on Driver IC Data Sheet, Note 5).

Symbol	Definition	Min	Тур	Max	Units
V _{IH}	Logic "0" input voltage				V
V_{IL}	Logic "1" input voltage			0.8	V
V _{CCUV+} , V _{BSUV+}	V _{CC} and V _{BS} supply undervoltage positive going threshold	8.0	8.9	9.8	V
V _{CCUV-} , V _{BSUV-}	V _{CC} and V _{BS} supply undervoltage negative going threshold	7.4	8.2	9.0	V
V _{CCUVH} , V _{BSUVH}	V _{CC} and V _{BS} supply undervoltage lock-out hysteresis	0.3	0.7		V
$V_{IN,Clamp}$	Input Clamp Voltage (HIN, LIN, T/I _{TRIP}) I _{IN} =10μA	4.9	5.2	5.5	V
I_{QBS}	Quiescent V _{BS} supply current V _{IN} =0V			165	μΑ
I_{QCC}	Quiescent V _{CC} supply current V _{IN} =0V			3.35	mA
I _{LK}	Offset Supply Leakage Current			60	μΑ
I_{IN+}	Input bias current V _{IN} =5V		200	300	μΑ
I _{IN-}	Input bias current V _{IN} =0V		100	220	μΑ
I _{TRIP+}	I _{TRIP} bias current V _{ITRIP} =5V		30	100	μΑ
I _{TRIP-}	I _{TRIP} bias current V _{ITRIP} =0V		0	1	μΑ
V(I _{TRIP})	I _{TRIP} threshold Voltage 440		490	540	mV
V(I _{TRIP} ,HYS)	I _{TRIP} Input Hysteresis		70		mV

Dynamic Electrical Characteristics @ T_J= 25°C

-			_				
Symbol	Parameter	Min	Тур	Max	Units	Conditions	
T _{ON}	Input to Output propagation turn- on delay time (see fig.11) ^{2/}		0.83		μs	V _{CC} =V _{BS} = 15V, I _D =30A,	
T _{OFF}	Input to Output propagation turn- off delay time (see fig. 11) ^{2/}		1.08		μs	V ⁺ =100V	
T _{FLIN}	Input Filter time (HIN, LIN) ^{3/}	100	200		ns	V _{IN} =0 & V _{IN} =5V	
T _{BLT-Trip}	I _{TRIP} Blancking Time ^{3/}	100	150		ns	V _{IN} =0 & V _{IN} =5V	
D _T	Dead Time (V _{BS} =V _{DD} =15V) ^{3/}	220	290	00 360 ns V _{BS} =V _{CC} =15V		V _{BS} =V _{CC} =15V	
M _T	Matching Propagation Delay Time (On & Off) ^{3/}		40	75	ns	$V_{CC} = V_{BS} = 15V$, external dead time> 400ns	
T_{ITrip}	I_{Trip} to six switch to turn-off propagation delay (see fig. 2) ^{4/}		3.2		μs	$V_{CC}=V_{BS}=15V, I_{D}=30A,$ $V^{+}=100V$	
т	Post I_{Trip} to six switch to turn-off		7.7		me	T _C = 25°C	
T _{FLT-CLR}	clear time (see fig. 2) ^{4/}		6.7		ms	T _C = 100°C	

^{2/} Based on Characterization Data only. Not subject to production test.

^{3/} Based on Driver IC Data Sheet.

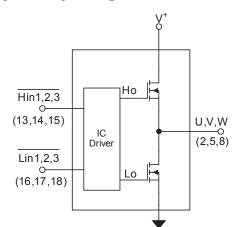
^{4/} Verified by Design. Not subject to production test.

Thermal and Mechanical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	Conditions
R _{th(J-C)}	Thermal resistance, FET ^{5/}		1.2	1.4		Flat, greased surface. Heatsink compound thermal conductivity
R _{th(C-S)}	Thermal resistance, C-S ^{5/}		0.1		1W/m°K	
C_D	Creepage Distance	3.5			mm	See outline Drawings

^{5/} Based on Characterization Data only. Not subject to production test.

Internal Current Sensing Resistor - Shunt Characteristics


Symbol	Parameter	Min	Тур	Max	Units	Conditions
R _{Shunt}	Resistance	8.1	8.3	8.5	mΩ	T _C = 25°C
T_{Coeff}	Temperature Coefficient	0		200	ppm/°C	
P _{Shunt}	Power Dissipation			4.5	W	-40°C< T _C <100°C
T _{Range}	Temperature Range	-20		125	°C	

Internal NTC - Thermistor Characteristics

Parameter	Definition	Min	Тур	Max	Units	Conditions
R ₂₅	Resistance	97	100	103	kΩ	$T_C = 25^{\circ}C$
R ₁₂₅	Resistance ^{6/}	2.25	2.52	2.80	kΩ	T _C = 125°C
В	B-constant (25-50°C) ^{6/}	4165	4250	4335	k	$R_2 = R_1 e^{[B(1/T2 - 1/T1)]}$
Temperature Range		-20		125	°C	
Typ. Dissipation constant			1		mW/°C	$T_C = 25^{\circ}C$

^{6/} Verified by Design. Not subject to production test.

Input-Output Logic Level Table

I_{TRIP}	HIN1,2,3	LIN1,2,3	U,V,W
0	0	1	V ⁺
0	1	0	0
0	1	1	Χ
1	Χ	Χ	Χ

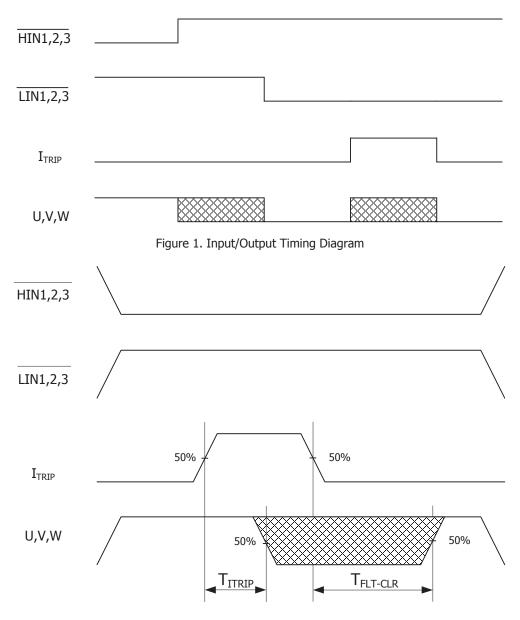
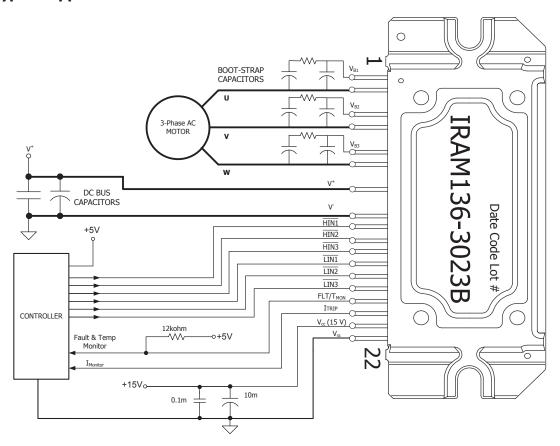


Figure 2. I_{TRIP} Timing Waveform

Note 7: The shaded area indicates that both high-side and low-side switches are off and therefore the half-bridge output voltage would be determined by the direction of current flow in the load.


Module Pin-Out Description

Pin	Name	Description
1	V _{B1}	High Side Floating Supply Voltage 1
2	U, V _{S1}	Output 1 - High Side Floating Supply Offset Voltage
3	NA	none
4	V_{B2}	High Side Floating Supply voltage 2
5	V,V _{S2}	Output 2 - High Side Floating Supply Offset Voltage
6	NA	none
7	V _{B3}	High Side Floating Supply voltage 3
8	W,V _{S3}	Output 3 - High Side Floating Supply Offset Voltage
9	NA	none
10	V ⁺	Positive Bus Input Voltage
11	NA	none
12	V-	Negative Bus Input Voltage
13	H _{IN1}	Logic Input High Side Gate Driver - Phase 1
14	H _{IN2}	Logic Input High Side Gate Driver - Phase 2
15	H _{IN3}	Logic Input High Side Gate Driver - Phase 3
16	L _{IN1}	Logic Input Low Side Gate Driver - Phase 1
17	L _{IN2}	Logic Input Low Side Gate Driver - Phase 2
18	L _{IN3}	Logic Input Low Side Gate Driver - Phase 3
19	Fault/T _{MON}	Temperature Monitor and Fault Function
20	I _{Sense}	Current Monitor
21	V _{CC}	+15V Main Supply
22	V _{SS}	Negative Main Supply

Typical Application Connection IRAM136-3023B

- 1. Electrolytic bus capacitors should be mounted as close to the module bus terminals as possible to reduce ringing and EMI problems. Additional high frequency ceramic capacitor mounted close to the module pins will further improve performance.
- 2. In order to provide good decoupling between VCC-VSS and VB1,2,3-VS1,2,3 terminals, the capacitors shown connected between these terminals should be located very close to the module pins. Additional high frequency capacitors, typically 0.1μF, are strongly recommended.
- 3. Value of the boot-strap capacitors depends upon the switching frequency. Their selection should be made based on IR design tip DN 98-2a, application note AN-1044 or Figure 9. Bootstrap capacitor value must be selected to limit the power dissipation of the internal resistor in series with the VCC. (see maximum ratings Table on page 3).
- 4. After approx. 8ms the FAULT is reset. (see Dynamic Characteristics Table on page 5).
- 5. PWM generator must be disabled within Fault duration to guarantee shutdown of the system, overcurrent condition must be cleared before resuming operation.
- 6. Fault/ T_{MON} Monitor pin must be pulled-up to +5V.

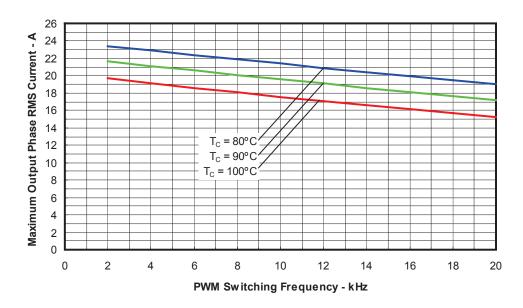


Figure 3. Maximum Sinusoidal Phase Current vs. PWM Switching Frequency Sinusoidal Modulation, $V^+=100V$, $T_J=150^{\circ}C$, Modulation Depth=0.8, PF=0.6

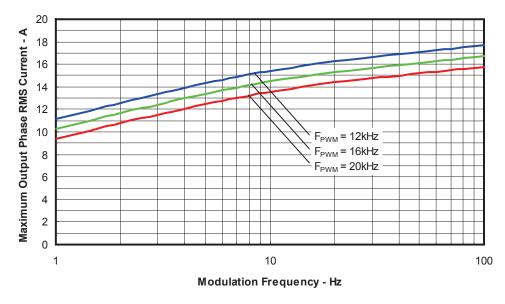


Figure 4. Maximum Sinusoidal Phase Current vs. Modulation Frequency Sinusoidal Modulation, $V^+=100V$, $T_J=100^{\circ}C$, Modulation Depth=0.8, PF=0.6

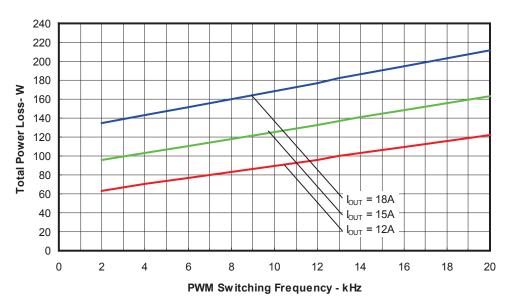


Figure 5. Total Power Losses vs. PWM Switching Frequency Sinusoidal Modulation, $V^+=100V$, $T_1=150^{\circ}C$, Modulation Depth=0.8, PF=0.6

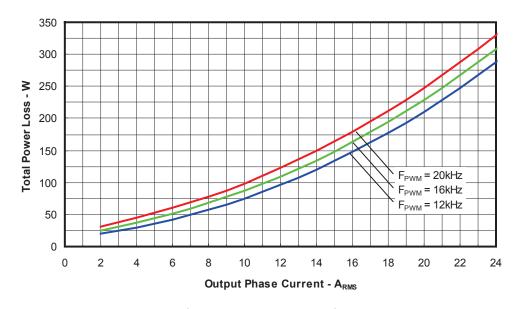


Figure 6. Total Power Losses vs. Output Phase Current Sinusoidal Modulation, V⁺=100V, T_J =150°C, Modulation Depth=0.8, PF=0.6

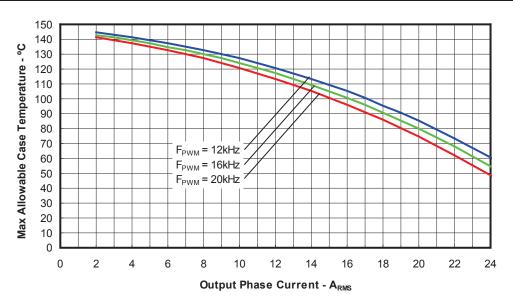


Figure 7. Maximum Allowable Case Temperature vs. Output RMS Current per Phase Sinusoidal Modulation, $V^+=100V$, $T_J=150^{\circ}C$, Modulation Depth=0.8, PF=0.6

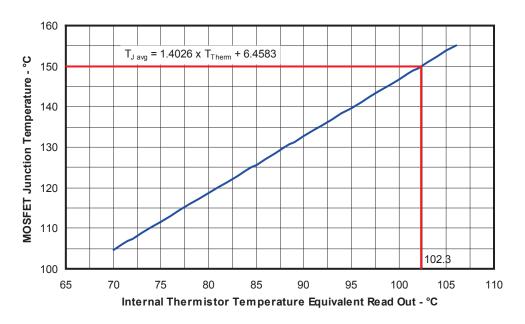


Figure 8. Estimated Maximum MOSFET Junction Temperature vs. Thermistor Temperature

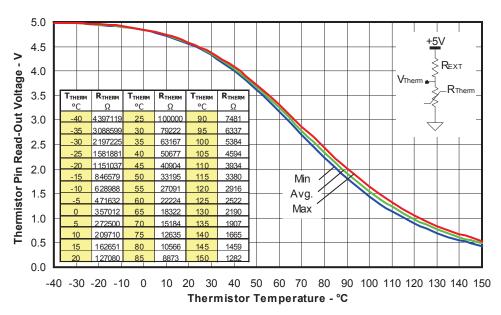


Figure 9. Thermistor Readout vs. Temperature (12Kohm pull-up resistor, 5V) and Normal Thermistor Resistance values vs. Temperature Table.

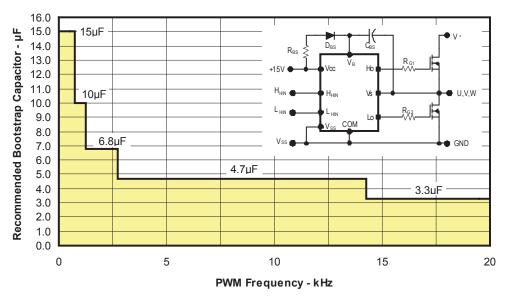



Figure 10. Recommended Bootstrap Capacitor Value vs. Switching Frequency

Figure 11. Switching Parameter Definitions

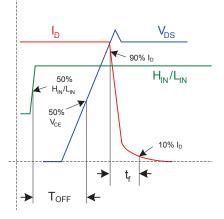


Figure 11a. Input to Output propagation turn-on delay time.

Figure 11b. Input to Output propagation turn-off delay time.

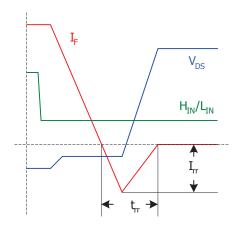
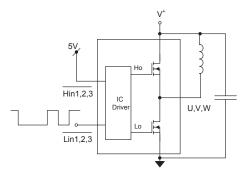



Figure 11c. Diode Reverse Recovery.

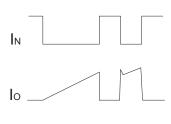
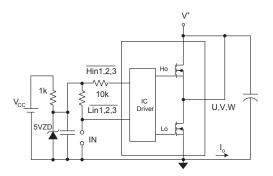



Figure CT1. Switching Loss Circuit

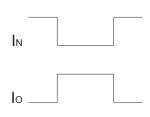
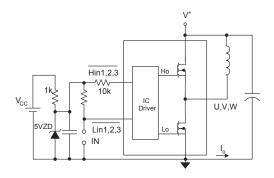
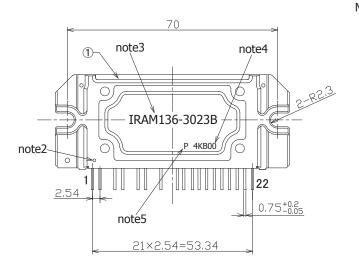
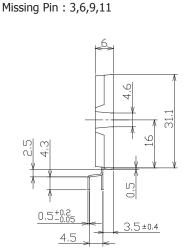
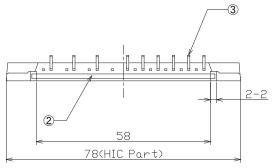



Figure CT2. S.C.SOA Circuit




In Io


Figure CT3. R.B.SOA Circuit

Package Outline IRAM136-3023B

note1: Unit Tolerance is ± 0.5 mm, Unless Otherwise Specified.

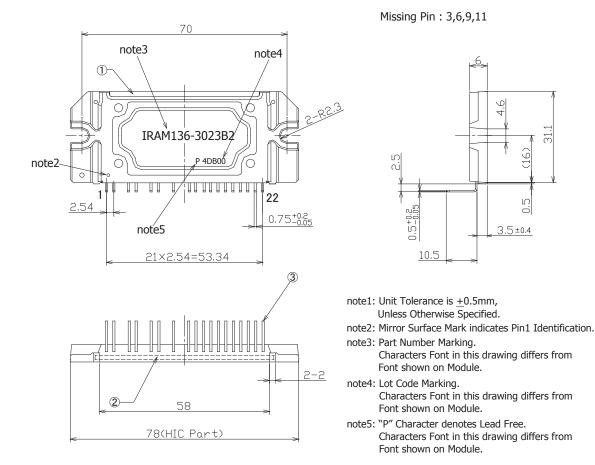
note2: Mirror Surface Mark indicates Pin1 Identification.

note3: Characters Font in this drawing differs from Font shown on Module.

note4: Lot Code Marking.

Characters Font in this drawing differs from

Font shown on Module.


note5: "P" Character denotes Lead Free.

Characters Font in this drawing differs from

Font shown on Module.

Dimensions in mm For mounting instruction see AN-1049

Package Outline IRAM136-3023B2

For mounting instruction see AN-1049

Data and Specifications are subject to change without notice **IR WORLD HEADQUARTERS:** 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information 2012-10-26