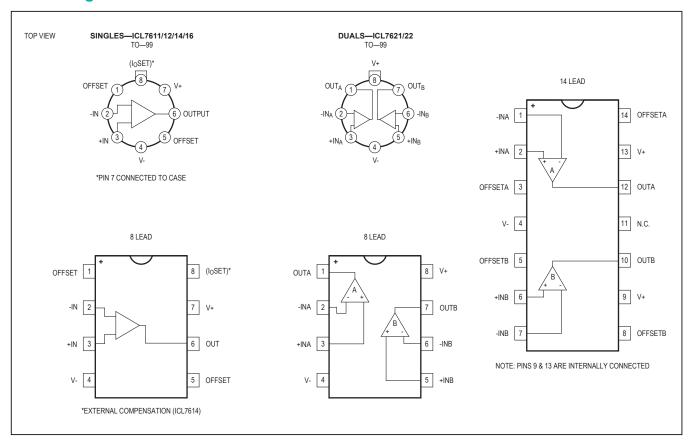
Ordering Information (continued)

	ICL7611	ICL7612	ICL7614	ICL7616	ICL7621	ICL7622	ICL7631	ICL7632	ICL7641	ICL7642
Compensated	Х	Х		Х	Х	Х	X		X	Х
Externally Compensated			Χ							
Extended CMVR		Χ		Χ						
Offset null capability	Х	X	Х	X		Х				
Programmable I _Q	Х	Х		Х			Х	Х		
Fixed I _Q -10µA										Х
Fixed I _Q -100µA			Х		Х	Х				
Fixed I _Q -1mA									X	


Ordering Information (Single/Dual)

PART	TEMP RANGE	PIN-PACKAGE
ICL761XACPA	0°C to +70°C	8 Plastic Dip
ICL761XACSA	0°C to +70°C	8 Slim SO
ICL761XACTV	0°C to +70°C	TO-99 Metal Can
ICL761XAMTV	-55°C to +125°C	TO-99 Metal Can
ICL761XBCPA	0°C to +70°C	8 Plastic Dip
ICL761XBCSA	0°C to +70°C	8 Slim SO
ICL761XBCTV	0°C to +70°C	TO-99 Metal Can
ICL761XBESA	-40°C to +85°C	8 Slim SO
ICL761XBMTV	-55°C to +125°C	TO-99 Metal Can
ICL761XDCPA	0°C to +70°C	8 Plastic Dip
ICL761XDCSA	0°C to +70°C	8 Slim SO
ICL761XDCTV	0°C to +70°C	TO-99 Metal Can
ICL761XDESA	-40°C to +85°C	8 Slim SO
ICL7621ACPA	0°C to +70°C	8 Plastic Dip
ICL7621ACSA	0°C to +70°C	8 Slim SO
ICL7621ACTV	0°C to +70°C	TO-99 Metal Can
ICL7621AMTV	-55°C to +125°C	TO-99 Metal Can
ICL7621BCPA	0°C to +70°C	8 Plastic Dip

Note: X above is replaced by: 1, 2, 4, 8.

PART	TEMP RANGE	PIN-PACKAGE
ICL7621BCSA	0°C to +70°C	8 Slim SO
ICL7621BCTV	0°C to +70°C	TO-99 Metal Can
ICL7621BMTV	-55°C to +125°C	TO-99 Metal Can
ICL7621DCPA	0°C to +70°C	8 Plastic Dip
ICL7621DCSA	0°C to +70°C	8 Slim SO
ICL7621DCTV	0°C to +70°C	TO-99 Metal Can
ICL7621DESA+	-40°C to +85°C	8 Slim SO
ICL7622ACPD	0°C to +70°C	14 Plastic Dip
ICL7622ACSD	0°C to +70°C	14 Slim SO
ICL7622ACJD	0°C to +70°C	14 CERDIP
ICL7622AMJD	-55°C to +125°C	14 CERDIP
ICL7622BCPD	0°C to +70°C	14 Plastic Dip
ICL7622BCSA	0°C to +70°C	14 Slim SO
ICL7622BCJD	0°C to +70°C	14 CERDIP
ICL7622BMJD	-55°C to +125°C	14 CERDIP
ICL7622DCPD	0°C to +70°C	14 Plastic Dip
ICL7622DCSD	0°C to +70°C	14 Slim SO
ICL7622DCJD	0°C to +70°C	14 CERDIP

Pin Configurations

Single/Dual/Triple/Quad **Operational Amplifiers**

Absolute Maximum Ratings (Single/Dual)

Total Supply Voltage (V+ to V-)	+18V
Input Voltage(V+ + 0.3V) to	(V 0.3V)
Differential Input Voltage (Note 1)±(V+ + 0.3V) to	(V 0.3V)
Duration of Output Short Circuit (Note 2)	Unlimited
Continuous Power Dissipation (T _A = +25°C)	
TO-99 Metal Can (derate 2mW/°C above +25°C)	250mW
8-Pin Minidip (derate 2mW/°C above +25°C)	250mW
14-Pin Plastic (derate 3mW/°C above +25°C)	375mW
14-Pin CERDIP (derate 4mW/°C above +25°C)	500mW
16-Pin Plastic (derate 3mW/°C above +25°C)	375mW
16-Pin CERDIP (derate 4mW/°C above +25°C)	500mW

Operating remperature Ranges.	
M Series	55°C to +125°C
E Series	40°C to +85°C
C Series	0°C to +70°C
Storage Temperature Range	55°C to +150°C
Lead Temperature (soldering, 10s).	+300°C
Soldering Temperature (reflow)	
Lead(Pb)-Free Packages	+260°C
Packages Containing Lead	+240°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 1: Long-term offset voltage stability will be degraded if large input differential voltages are applied for long periods of time.

Note 2: The outputs may be shorted to ground or to either supply for $V_{SUPP} \le 10V$. Care must be taken to insure that the dissipation rating is not exceeded.

Electrical Characteristics (Single/Dual)

(V_{SUPP} = ± 1.0 V, I_Q = 10μ A, T_A = $+25^{\circ}$ C, unless otherwise noted.)

DADAMETED	OVMDOL	CONDITIONS		ICL76XX	Δ.		ICL76XXE	3	UNITS
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIIS
Input Offset Voltage	V	$R_S \le 100k\Omega$, $T_A = +25^{\circ}C$			2			5	- mV
Input Offset Voltage	V _{OS}	$R_S \le 100k\Omega$, $T_{MIN} \le T_A \le T_{MAX}$			3			7	IIIV
Temperature Coefficient of V _{OS}	ΔV _{OS} /ΔT	R _S ≤ 100kΩ		10			15		μV/°C
Input Offset Current	1	T _A = +25°C		0.5	30		0.5	30	- pA
input Onset Current	los	0°C ≤ T _A ≤ +70°C			300			300	pΑ
Innut Dies Cument		T _A = +25°C		1.0	50		1.0	50	- A
Input Bias Current	I _{BIAS}	0°C ≤ T _A ≤ +70°C			500			500	- pA
Common-Mode Voltage Range (Except ICL7612/ ICL7616)	V _{CMR}		-0.4		+0.6	-0.4		+0.6	V
Extended Common- Mode Voltage Range (ICL7612 Only)	V _{CMR}		-1.1		+0.6	-1.1		+0.6	V
Extended Common- Mode Voltage Range (ICL7616 Only)	V _{CMR}	I _Q = 10μA	-1.3		-0.3	-1.3		-0.3	V
Output Voltage Swins	\/	$R_L = 1M\Omega$, $T_A = +25$ °C		±0.98			±0.98		V
Output Voltage Swing	V _{OUT}	$R_L = 1M\Omega$, $0^{\circ}C \le T_A \le +70^{\circ}C$		±0.96			±0.96		V

(V_{SUPP} = ± 1.0 V, I_Q = 10μ A, T_A = $+25^{\circ}$ C, unless otherwise noted.)

DADAMETED	OVMDOL	CONDITIONS		ICL76XX	4		LIMITO		
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Large-Signal Voltage	_	$V_{O} = \pm 0.1 V, R_{L} = 1 M \Omega,$ $T_{A} = +25^{\circ} C$		90			90		٩D
Gain	A _{VOL}	$V_O = \pm 0.1 \text{V}, R_L = 1 \text{M}\Omega,$ $0^{\circ}\text{C} \leq T_A \leq +70^{\circ}\text{C}$		80			dB		
Unity-Gain Bandwidth	GBW			0.044			0.044		MHz
Input Resistance	R _{IN}			10 ¹²			10 ¹²		Ω
Common-Mode Rejection Ratio	CMRR	R _S ≤ 100kΩ		80			80		dB
Power-Supply Rejection Ratio	PSRR	R _S ≤ 100kΩ		80			80		dB
Input-Referred Noise Voltage	e _n	R _S = 100Ω, f = 1kHz		100			100		nV/√Hz
Input-Referred Noise Current	in	$R_S = 100\Omega$, $f = 1kHz$		0.01			0.01		pA/√Hz
Supply Current (Per Amplifier)	I _{SUPP}	No signal, no load		6	15		6	15	μА
Slew Rate	SR	$A_{VOL} = 1$, $C_L = 100pF$, $V_{IN} = 0.2V_{P-P}$, $R_L = 1M\Omega$		0.016			0.016		V/µs
Rise Time	t _r	V_{IN} = 50mV, C_L = 100pF, R_L = 1M Ω		20			20		μs
Overshoot Factor		V_{IN} = 50mV, C_L = 100pF, R_L = 1M Ω		5			5		%

Electrical Characteristics (Single/Dual)

(V_{SUPP} = ± 5.0 V, T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	IC	ICL76XXA		IC	CL76XX	В	ICL76XXD			UNITS
PARAMETER	STIVIBUL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset	$R_S \le 100k\Omega$, $T_A = +25^{\circ}C$			2			5			15	mV	
Voltage	oltage	$R_S \le 100k\Omega$, $T_{MIN} \le T_A \le T_{MAX}$			3			7			20	IIIV
Temperature Coefficient of V _{OS}	ΔV _{OS} /ΔT	R _S ≤ 100kΩ		10			15			25		μV/°C
		T _A = +25°C		0.5	30		0.5	30		0.5	30	
		C: 0°C ≤ T _A ≤ +70°C			300			300			300	
Input Offset Current	los	E: -40°C ≤ T _A ≤ +85°C			800			800			800	рА
	1	M: -55°C ≤ T _A ≤ +125°C			800			800			800	

DADAMETED	CVMBOL	CONDITIONS	IC	L76XX	(A	10	CL76XX	В	IC	CL76XX	D	UNITS
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
		T _A = +25°C		1.0	50		1.0	50		1.0	50	
		C: 0°C ≤ T _A ≤ +70°C			400			400			400	
Input Bias Current	I _{BIAS}	E: -40°C ≤ T _A ≤ +85°C			4000			4000			4000	pA
		M: -55°C ≤ T _A ≤ +125°C			4000			4000			4000	
		I _O = 10μA (Note 3)	+4.4			+4.4			+4.4			
Common-Mode		IQ = TOPA (Note 3)	-4.0			-4.0			-4.0			
Voltage Range	Range ICL7612/	I _O = 100μA (Note 3)	+4.2			+4.2			+4.2			V
(Except ICL7612/		IQ = TOOPA (Note 3)	-4.0			-4.0			-4.0			v
ICL7616)		I _O = 1mA (Note 3)	+3.7			+3.7			+3.7			
		IQ = IIIIA (Note 3)	-3.7			-3.7			-3.7			
		I _Q = 10μA	±5.3			±5.3			±5.3			
Extended		I _O = 100μA	+5.3			+5.3			+5.3			
Common-Mode Voltage Range	V _{CMR}	ΙQ - ΙουμΑ	-5.1			-5.1			-5.1			V
(ICL7612 Only)		I _O = 1mA	+5.3			+5.3			+5.3			
		IQ - IIIA	-4.5			-4.5			-4.5			
		I _O = 10μA	-5.3			-5.3			-5.3			
Extended		ιζ – τομΑ	+3.7			+3.7			+3.5			
Common-Mode	\/	I. = 100uA	-5.1			-5.1			-5.1			V
Voltage Range	V _{CMR}	I _O = 100µA	+3.0			+3.0			+2.7			
(ICL7616 Only)		I _O = 1mA	-4.5			-4.5			-4.5			
		IQ - IIIIA	+2.0			+2.0			+1.7			

	2)////			IC	L76XX	(A	IC	CL76XX	В	ICL76XXD			LINUTO
PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIIS
			T _A = +25°C	±4.9			±4.9			±4.9			
		Ι _Q = 10μΑ,	C: 0°C ≤ T _A ≤ +70°C	±4.8			±4.8			±4.8			
		$R_L = 1M\Omega$ (Note 3)	E: -40°C ≤ T _A ≤ +85°C	±4.7			±4.7			±4.7			
			M: -55°C ≤ T _A ≤ +125°C	±4.7			±4.7			±4.7			
			T _A = +25°C	±4.9			±4.9			±4.9			
0.45.17/1855		I _Q =	C: 0°C ≤ T _A ≤ +70°C	±4.8			±4.8			±4.8			
Output Voltage Swing	V _{OUT}	100μA, R _L = 100kΩ	E: -40°C ≤ T _A ≤ +85°C	±4.5			±4.5			±4.5			V
			M: -55°C ≤ T _A ≤ +125°C	±4.5			±4.5			±4.5			
			T _A = +25°C	±4.5			±4.5			±4.5			
		IQ =	C: 0°C ≤ T _A ≤ +70°C	±4.3			±4.3			±4.3			
		$ \begin{array}{c c} 1\text{mA, }R_{L} \\ = 10k\Omega \\ \text{(Note 3)} \end{array} $	E: -40°C ≤ T _A ≤ +85°C	±4.0			±4.0			±4.0			
			M: -55°C ≤ T _A ≤ +125°C	±4.0			±4.0			±4.0			

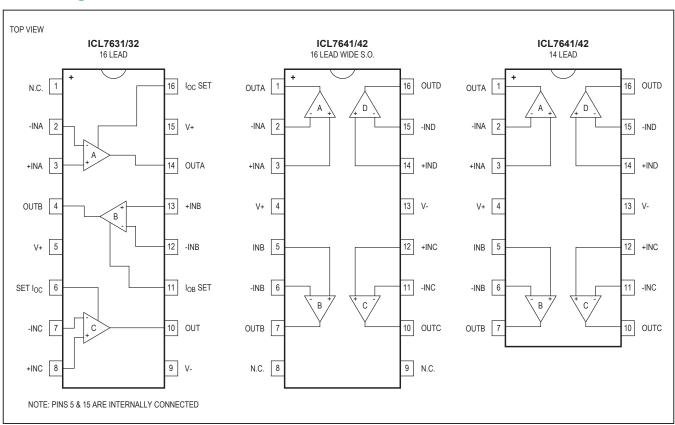
				IC	CL76XX	(A	10	CL76XX	В	ICL76XXD			LINUTO
PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
			T _A = +25°C	86	104		80	104		80	104		
		V _O = ±4.0V	C: 0°C ≤ T _A ≤ +70°C	80			75			75			
		$R_L = 1M\Omega,$ $I_Q = 10\mu A$	E: -40°C ≤ T _A ≤ +85°C	74			68			68			dB
			M: -55°C ≤ T _A ≤ +125°C	74			68			68			
			T _A = +25°C	86	102		80	102		80	102		
		V _O = ±4.0V,	C: 0°C ≤ T _A ≤ +70°C	80			75			75			
Large-Signal Voltage Gain	A _{VOL}	$R_L = 100k\Omega,$ $I_Q = 100\mu A$	E: -40°C ≤ T _A ≤ +85°C	74			68			68		dB	dB
		Ισομίτ	M: -55°C ≤ T _A ≤ +125°C	74			68			68			
			T _A = +25°C	80	83		76	83		76	83		
		V _O = ±4.0V,	C: 0°C ≤ T _A ≤ +70°C	76			72			72			
		R _L = 10kΩ,	E: -40°C ≤ T _A ≤ +85°C	72			68			68			
			M: -55°C ≤ T _A ≤ +125°C	72			68			68			

DADAMETED	OVALDO.	0011		IC	L76XX	Α	I	CL76XX	В	IC	CL76XX	D	
PARAMETER	SYMBOL	CONI	DITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
		I _Q = 10μ	A (Note 3)		0.044			0.044			0.044		
Unity-Gain Bandwidth	GBW	I _Q = 100	μA		0.48			0.48			0.48		MHz
		$I_Q = 1mA$	(Note 3)		1.4			1.4			1.4		
Input Resistance	R _{IN}				1012			1012			1012		Ω
		R _S ≤ 100 I _Q = 10μ	kΩ, A (Note 3)	76	96		70	96		70	96		
Common-Mode Rejection Ratio	CMRR	$R_S \le 100$ $I_Q = 100$		76	91		70	91		70	91		dB
		$R_S \le 100$ $I_Q = 1 \text{m/s}$	kΩ, \(Note 3)	66	87		60	87		60	87		
		R _S ≤ 100	NkΩ, A (Note 3)	80	94		80	94		80	94		
Power-Supply Rejection Ratio	PSRR	$R_S \le 100$ $I_Q = 100$		80	86		80	86		80	86		dB
		$R_S \le 100$ $I_Q = 1 \text{m/s}$	kΩ, \(Note 3)	70	77		70	77		70	77		
Input-Referred Noise Voltage	e _n	R _S = 100 f = 1kHz)Ω,		100			100			100		nV/√Hz
Input-Referred Noise Current	i _n	R _S = 100 f = 1kHz)Ω,		0.01			0.01			0.01		pA/√Hz
			I _Q = 10μA (Note 3)		0.01	0.02		0.01	0.02		0.01	0.02	
Supply Current (Per Amplifier)	I _{SUPP}	No signal, no load	I _Q = 100μΑ		0.1	0.25		0.1	0.25		0.1	0.25	mA
			I _Q = 1mA (Note 3)		1.0	2.5		1.0	2.5		1.0	2.5	
Channel Separation	V _{O1} / V _{O2}	A _{VOL} = 1	00		120			120			120		dB

($V_{SUPP} = \pm 5.0V$, $T_A = +25$ °C, unless otherwise noted.)

DADAMETER	CYMPOL	CON	DITIONS	IC	L76XX	A	IC	CL76XX	В	IC	CL76XX	D	UNITS
PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
		A _{VOL} =	$I_Q = 10\mu A$ (Note 3), $R_L = 1M\Omega$		0.016			0.016			0.016		
Slew Rate (Note 4)	SR	1, C _L = 100pF, V _{IN} =	I _Q = 100μA, R _L = 100kΩ		0.16			0.16			0.16		V/µs
		8V _{P-P}	$I_Q = 1mA$ (Note 3), $R_L = 10k\Omega$		1.6			1.6			0.016		
			$I_Q = 10\mu A$ (Note 3), $R_L = 1M\Omega$		20			20			20		
Rise Time (Note 4)	t _r	V _{IN} = 50mV, C _L = 100pF	I _Q = 100μA, R _L = 100kΩ		2			2			2		μs
		'	$I_Q = 1mA$ (Note 3), $R_L = 10k\Omega$		0.9			0.9			0.9		
			$I_Q = 10\mu A$ (Note 3), $R_L = 1M\Omega$		5			5			5		
Overshoot Factor (Note 4)		V _{IN} = 50mV, C _L = 100μA, R _L = 100kΩ			10		10			10			%
		,	$I_Q = 1mA$ (Note 3), $R_L = 10k\Omega$	40				40			40		

Note 3: AICL7611, ICL7612, ICL7616 only. **Note 4:** ICL7814; 39pF from pin 6 to pin 8.


Ordering Information (Triple/Quad)

PART	TEMP RANGE	PIN-PACKAGE
ICL763XBCPE	0°C to +70°C	16 Plastic Dip
ICL763XBCSE	0°C to +70°C	16 Slim SO
ICL763XCCPE	0°C to +70°C	16 Plastic Dip
ICL763XCCSE	0°C to +70°C	16 Slim SO
ICL763XECPE	0°C to +70°C	16 Plastic Dip
ICL763XECSE	0°C to +70°C	16 Slim SO
ICL763XBCJE	0°C to +70°C	16 CERDIP
ICL763XCCJE	0°C to +70°C	16 CERDIP
ICL763XECJE	0°C to +70°C	16 CERDIP
ICL763XBMJE	-55°C to +125°C	16 CERDIP
ICL763XCMJE	-55°C to +125°C	16 CERDIP

PART	TEMP RANGE	PIN-PACKAGE
ICL764XBCPD	0°C to +70°C	14 Plastic Dip
ICL764XBCWE	0°C to +70°C	16 Wide SO
ICL764XCCPD	0°C to +70°C	14 Plastic Dip
ICL764XCCWE	0°C to +70°C	16 Wide SO
ICL764XECPD	0°C to +70°C	14 Plastic Dip
ICL764XECWE	0°C to +70°C	16 Wide SO
ICL764XBCJD	0°C to +70°C	14 CERDIP
ICL764XCCJD	0°C to +70°C	14 CERDIP
ICL764XECJD	0°C to +70°C	14 CERDIP
ICL764XBMJD	-55°C to +125°C	14 CERDIP
ICL764XCMJD	-55°C to +125°C	14 CERDIP

Note: X above is replaced by: 1, 2.

Pin Configurations

Single/Dual/Triple/Quad Operational Amplifiers

Absolute Maximum Ratings (Triple/Quad)

Total Supply Voltage (V+ to V-)	+18V
Input Voltage(V+ + 0.3V) to (V-	0.3V)
Differential Input Voltage (Note 5)± (V+ + 0.3V) - (V-	0.3V)
Duration of Output Short Circuit (Note 6)U	Inlimited
Continuous Power Dissipation (T _A = +25°C)	
TO-99 Metal Can (derate 2mW/°C above +25°C)	.250mW
8-Pin Minidip (derate 2mW/°C above +25°C)	.250mW
14-Pin Plastic (derate 3mW/°C above +25°C)	.375mW
14-Pin CERDIP (derate 4mW/°C above +25°C)	.500mW

16-Pin Plastic (derate 3mW/°C above +25°C)37 16-Pin CERDIP (derate 4mW/°C above +25°C)50	
Operating Temperature Ranges:	
M Series55°C to +1	25°C
E Series40°C to +	-85°C
C Series0°C to +	+70°C
Storage Temperature Range55°C to +1	150°C
Lead Temperature (soldering, 10s)+3	300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 5: Long-term offset voltage stability will be degraded if large input differential voltages are applied for long periods of time.

Note 6: The outputs may be shorted to ground or to either supply for V_{SUPP} ≤ 10V. Care must be taken to insure that the dissipation rating is not exceeded.

Electrical Characteristics (Triple/Quad)

 $(V_{SUPP} = \pm 1.0V, I_Q = 10\mu A, T_A = \pm 25^{\circ}C, unless otherwise noted.)$ (Specifications apply to ICL7631/7632/7642 only.)

DARAMETER	0)/44001	CONDITIONS		ICL76XXE	3		ICL76XXC	;	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	V	$R_S \le 100k\Omega$, $T_A = +25^{\circ}C$			5			10	mV
Input Offset Voltage	V _{OS}	$R_S \le 100k\Omega$, $T_{MIN} \le T_A \le T_{MAX}$			7			12	IIIV
Temperature Coefficient of V _{OS}	ΔV _{OS} /ΔT	R _S ≤ 100kΩ		15			20		μV/°C
Input Offset Current	laa	T _A = +25°C		0.5	30		0.5	30	pA
Input Onset Current	los	$0^{\circ}\text{C} \le \text{T}_{\text{A}} \le +70^{\circ}\text{C}$			300			300	pΑ
Innut Dies Current		T _A = +25°C		1.0	50		1.0	50	~ ^
Input Bias Current	I _{BIAS}	0°C ≤ T _A ≤ +70°C			500			500	рA
Common-Mode Voltage Range	V _{CMR}		-0.4		+0.6	-0.4		+0.6	V
Outrot Valtage		$R_L = 1M\Omega$, $T_A = +25$ °C		±0.98			±0.98		
Output Voltage Swing	V _{OUT}	$R_L = 1M\Omega$, $0^{\circ}C \le T_A \le +70^{\circ}C$		±0.96			±0.96		V
Large-Signal Voltage	_	$V_{O} = \pm 0.1V$, $R_{L} = 1M\Omega$, $T_{A} = +25^{\circ}C$		90			90		dB
Gain	A _{VOL}	$\label{eq:controller} \left \begin{array}{l} V_{O} = \pm 0.1 V, \; R_{L} = 1 M \Omega, \\ 0^{\circ} C \leq T_{A} \leq +70^{\circ} C \end{array} \right $		80			80		ив
Unity-Gain Bandwidth	GBW			0.044			0.044		MHz
Input Resistance	R _{IN}			10 ¹²			10 ¹²		Ω
Common-Mode Rejection Ratio	CMRR	R _S ≤ 100kΩ		80			80		dB

 $(V_{SUPP}$ = ±1.0V, I_{Q} = 10 μ A, T_{A} = +25°C, unless otherwise noted.) (Specifications apply to ICL7631/7632/7642 only.)

DADAMETED	SYMBOL	CONDITIONS		ICL76XXE	3		;	LIMITO	
PARAMETER	STIVIBUL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Power-Supply Rejection Ratio	PSRR			80			80		dB
Input-Referred Noise Voltage	e _n	$R_S = 100\Omega$, $f = 1$ kHz		100			100		nV/√Hz
Input-Referred Noise Current	in	$R_S = 100\Omega$, $f = 1$ kHz		0.01			0.01		pA/√Hz
Supply Current (Per Amplifier)	I _{SUPP}	No signal, no load		6	15		6	15	μА
Channel Separation	V _{O1} / V _{O2}	A _{VOL} = 100		120			120		dB
Slew Rate	SR	$A_{VOL} = 1$, $C_L = 100pF$, $V_{IN} = 0.2V_{P-P}$, $R_L = 1M\Omega$		0.016			0.016		V/µs
Rise Time	t _r	V_{IN} = 50mV, C_L = 100pF, R_L = 1M Ω		20			20		μs
Overshoot Factor		V_{IN} = 50mV, C_L = 100pF, R_L = 1M Ω		5			5		%

Electrical Characteristics (Triple/Quad)

DADAMETED	SYMBOL	CONDITIONS	IC	CL76XX	В	10	CL76XX	С	IC	CL76XX	E	UNITS
PARAMETER	STIVIBUL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset	V	$R_S \le 100k\Omega$, $T_A = +25^{\circ}C$			5			10			20	mV
Voltage	V _{OS}	$R_S \le 100k\Omega$, $T_{MIN} \le T_A \le T_{MAX}$			7			15			25	IIIV
Temperature Coefficient of V _{OS}	ΔV _{OS} /ΔΤ	R _S ≤ 100kΩ		15			20			30		μV/°C
		T _A = +25°C		0.5	30		0.5	30		0.5	30	
Input Offset	los	C: 0°C ≤ T _A ≤ +70°C			300			300			300	рA
Current	.03	M: -55°C ≤ T _A ≤ +125°C			800			800			800	, pr
		T _A = +25°C		1.0	50		1.0	50		1.0	50	
Input Bias Current	I _{BIAS}	C: 0°C ≤ T _A ≤ +70°C			500			500			500	рA
	·BIAS	M: -55°C ≤ T _A ≤ +125°C			4000			4000			4000	F

242445	0)44501	2011	ITIONIO	IC	CL76XXB ICL76XXC ICL7				CL76XX	Œ			
PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
		1 - 10	(NIata 7)	+4.4			+4.4			+4.4			V V
		I _Q = 10μΑ	(Note 7)	-4.0			-4.0			-4.0			
Common-Mode	\/	L- = 100u	A (Note O)	+4.2			+4.2			+4.2			.,
Voltage Range	V _{CMR}	$I_Q = 100 \mu A \text{ (Note 9)}$		-4.0			-4.0			-4.0			V
		I _O = 1mA	(Note 8)	+3.7			+3.7			+3.7			
		IQ - IIIIA	-3.7			-3.7			-3.7				
		T _A = +25°C	±4.9			Q4.9			Q4.9				
	I _Q = 10μA, R _L = 1ΜΩ	C: 0°C ≤ T _A ≤ +70°C	±4.8			±4.8			±4.8				
		(Note 7)	M: -55°C ≤ T _A ≤ +125°C	±4.7			±4.7			±4.7			
			T _A = +25°C	±4.9			±4.9			±4.9			
Output Voltage Swing	V _{OUT}	I _Q = 100μA, R _L = 100kΩ	C: 0°C ≤ T _A ≤ +70°C	±4.8			±4.8			±4.8			NAX V
		(Note 9)	M: -55°C ≤ T _A ≤ +125°C	±4.5			±4.5			±4.5			
			T _A = +25°C	±4.5			±4.5			±4.5			
		I _Q = 1mA, R _L = 10kΩ	C: 0°C ≤ T _A ≤ +70°C	±4.3			±4.3			±4.3			
		(Note 8)	M: -55°C ≤ T _A ≤ +125°C	±4.0			±4.0			±4.0			

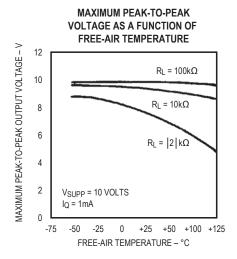
DADAMETED	CVMPOL	COND	ITIONS	IC	L76XX	(B	IC	CL76XX	С	IC	CL76XX	E	UNITS
PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
		V _O =	T _A = +25°C	86	104		80	104		80	104		
		±4.0V, R _L = 1MΩ, I _Q =	C: 0°C ≤ T _A ≤ +70°C	80			75			75			
		10µA (Note 7)	M: -55°C ≤ T _A ≤ +125°C	74			68			68			
		V _O =	T _A = +25°C	86	102		80	102		80	102		
Large-Signal Voltage Gain	A _{VOL}	$\pm 4.0V$, R _L = 100kΩ,	C: 0°C ≤ T _A ≤ +70°C	80			75			75			dB
		I _Q = 100μΑ	M: -55°C ≤ T _A ≤ +125°C	74			68			68			
		V _O =	T _A = +25°C	86	98		80	98		80	98		
	±4.0V, R _L = 10kΩ (Note 8).	C: 0°C ≤ T _A ≤ +70°C	80			75			75				
			M: -55°C ≤ T _A ≤ +125°C	74			68			68			

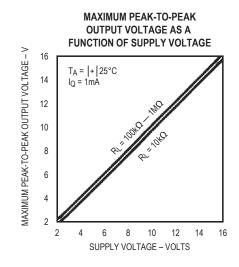
DADAMETED	OVMBOL	201	DITIONS		ICL76X	XB	I	CL76XX	C	10	CL76XX	Œ	UNITS
PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
		I _Q = 10 _k	ıA (Note 7)		0.044			0.044			0.044		
Unity-Gain Bandwidth	G _{BW}	I _Q = 100)μA (Note 9)		0.48			0.48			0.48		MHz
		I _Q = 1m	A (Note 8)		1.4			1.4			1.4		
Input Resistance	R _{IN}				10 ¹²			10 ¹²			10 ¹²		Ω
		_	R _S ≤ 100k <u>Ω,</u> _Q = 10μA (Note 7)		96		70	96		70	96		
Common-Mode Rejection Ratio	CMRR	R _S ≤ 10		76	91		70	91		70	91		dB
		R _S ≤ 10 I _Q = 1m	0kΩ, A (Note 8)	66	87		60	87		60	87		
		R _S ≤ 10 I _Q = 10µ	0kΩ, ıA (Note 7)	80	94		80	94		80	94		
Power-Supply Rejection Ratio	PSRR	R _S ≤ 10 I _Q = 100		80	86		80	86		80	86		dB
		R _S ≤ 10 I _Q = 1m	0kΩ, A (Note 8)	70	77		70	77		70	77		
Input-Referred Noise Voltage	e _n	R _S = 10	0Ω, f = 1kHz		100			100			100		nV/√ Hz
Input-Referred Noise Current	i _n	R _S = 10	0Ω, f = 1kHz		0.01			0.01			0.01		pA/√Hz
			I _Q = 10μA (Note 7)		0.01	0.022		0.01	0.022		0.01	0.022	
Supply Current (Per Amplifier)	I _{SUPP}	No signal, no load	I _Q = 100μΑ		0.1	0.25		0.1	0.25		0.1	0.25	mA
			I _Q = 1mA (Note 8)		1.0	2.5		1.0	2.5		1.0	2.5	
Channel Separation	V ₀₁ / V ₀₂	A _{VOL} =	100		120			120			120		dB
		A _{VOL} =	$I_Q = 10\mu A$ (Note 7), $R_L = 1M\Omega$		0.016			0.016			0.016		
Slew Rate (Note 10)	SR	1, C _L = 100pF, V _{IN} =	I _Q = 100μA, R _L = 100kΩ		0.16			0.16			0.16		V/µs
		8V _{P-P}	$I_Q = 1mA$ (Note 7), $R_L = 10k\Omega$		1.6			1.6			1.6		

 $(V_{SUPP} = \pm 5.0V, T_A = +25^{\circ}C, unless otherwise noted.)$

DADAMETER	CVMPO	CO1	IDITIONS	ICL76XXB ICL76XXC ICL76XXE		(E	LIMITO						
PARAMETER	SYMBOL	CON	IDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
			I_Q = 10μA (Note 7), R_L = 1MΩ		20			20			20		
Rise Time (Note 10)	t _r	V _{IN} = 50mV, C _L = 100pF	I _Q = 100μA, R _L = 100kΩ		2			2			TYP MAX	μs	
		Тоорг	$I_Q = 1mA$ (Note 8), $R_L = 10k\Omega$		0.9		0.9			0.9			
			$I_Q = 10\mu A$ (Note 7), $R_L = 1M\Omega$		5			5			5		
Overshoot Factor (Note 10)		V _{IN} = 50mV, C _L = 100pF	I _Q = 100μA, R _L = 100kΩ		10			10			10		%
		Ισορί	$I_Q = 1mA$ (Note 8), $R_L = 10k\Omega$	40			40			40			

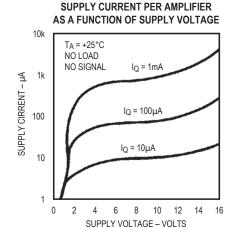
Note 7: Does not apply to ICL7641.

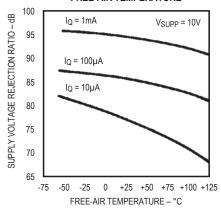

Note 8: Does not apply to ICL7642.


Note 9: ICL7631/ICL7632 only.

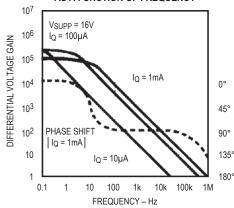
Note 10: Does not apply to ICL7632.

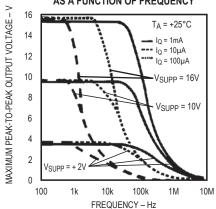
Typical Operating Characteristics

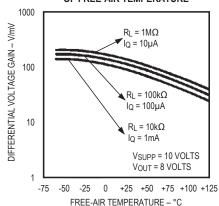

 $(T_A = +25$ °C, unless otherwise noted.)



Typical Operating Characteristics (continued)

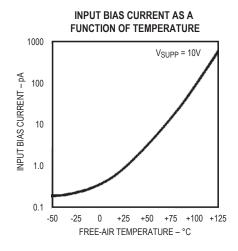

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$


POWER SUPPLY REJECTION RATIO AS A FUNCTION OF FREE-AIR TEMPERATURE

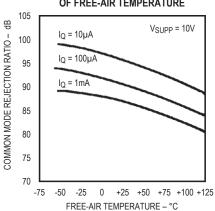

LARGE SIGNAL DIFFERENTIAL VOLTAGE GAIN AND PHASE SHIFT AS A FUNCTION OF FREQUENCY

PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF FREQUENCY

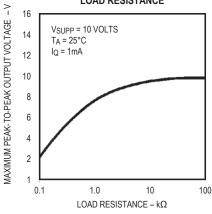
LARGE SIGNAL DIFFERENTIAL VOLTAGE GAIN AS A FUNCTION OF FREE-AIR TEMPERATURE

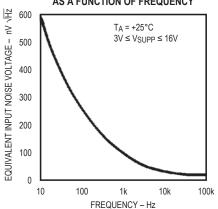


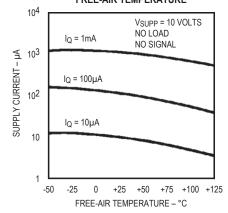
MAXIMUM OUTPUT SINK CURRENT AS A

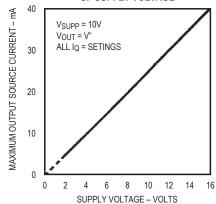


Typical Operating Characteristics (continued)

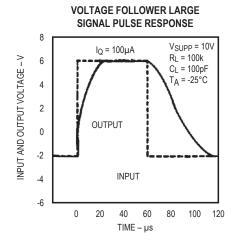

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

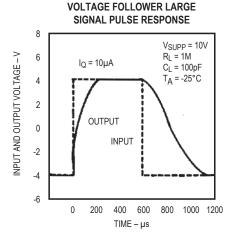

COMMON MODE REJECTION RATIO AS A FUNCTION OF FREE-AIR TEMPERATURE


MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF LOAD RESISTANCE


EQUIVALENT INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY

SUPPLY CURRENT PER AMPLIFIER AS A FUNCTION OF FREE-AIR TEMPERATURE


MAXIMUM OUTPUT/SOURCE CURRENT AS A FUNCTION OF SUPPLY VOLTAGE



Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE 8 V_{SUPP} = 10V INPUT AND OUTPUT VOLTAGE - VOLTS R_L = 100k C_L = 100pF T_A = -25°C 6 IQ = 1mA 4 2 OUTPUT 0 -2 INPUT -4 -6 0 2 4 6 8 10 12 TIME - µs

Single/Dual/Triple/Quad Operational Amplifiers

Detailed Description

Quiescent Current Selection

The voltage input to the l_Q pin of the single and triple amplifiers selects a quiescent current (l_Q) of $10\mu A,$ $100\mu A,$ or $1000\mu A.$ The dual and quad amplifiers have fixed quiescent current (l_Q) settings. Unity-gain bandwidth and slew-rate increase with increasing quiescent current, as does output sink current capability. The output source current capability is independent of quiescent current.

The lowest I_Q setting that results in sufficient bandwidth and slew rate should be selected for each specific application.

The $I_{\mathbb{Q}}$ pin of the single and triple amplifiers controls the quiescent current as follows:

 $I_Q = 10\mu A$ I_Q pin to V+

 $I_O = 100\mu A$ I_O pin between V- + 0.8V and V+ - 0.8V

 $I_{O} = 1 \text{mA}$ $I_{O} \text{ pin to V}$

Input Offset Nulling

The input offset can be nulled by connecting a $25k\Omega$ pot between the OFFSET terminals with the wiper connected to V+. At quiescent currents of 1mA and 100µA, the nulling range provided is adequate for all VOS selections. However, with higher values of VOS, and an IQ of 10µA, nulling may not be possible.

Frequency Compensation

All of the ICL7611 and ICL7621 series except the ICL7614 are internally compensated for unity-gain operation. The ICL7614 is externally compensated by a capacitor connected between COMP and OUT pins, with 39pF being greater than unity. The compensation capacitor value may be reduced to increase the bandwidth and slew rate. The ICL7132 is not compensated and does not have frequency compensation pins. Use only at gains 20 at I_Q of 1mA; at gains > 10 at I_Q of 100µA; at gain > 5 at I_Q of 10µA.

Output Loading Considerations

Approximately 70% of the amplifier's quiescent current flows in the output stage. The output swing can approach the supply rails for output loads of $1M\Omega$, $100k\Omega$, and $10k\Omega$, using the output stage in a highly linear Class A mode. Crossover distortion is avoided and the voltage gain is maximized in this mode. The output

stage, however, can also be operated in Class AB, which supplies higher output currents (see the *Typical Operating Characteristics*). The voltage gain decreases and the output transfer characteristic is non-linear during the transition from Class A to Class B operation.

The output stage, with a gain that is directly proportional to load impedance, approximates a transconductance amplifier. Approximately the same open-loop gains are obtained at each of the I_Q settings if corresponding loads of $10k\Omega$, $100k\Omega$, and $1M\Omega$ are used.

The maximum output source current is higher than the maximum sink current, and is independent of I_Q .

Like most amplifiers, there are output loads for which the amplifier stability is not guaranteed. In particular, avoid capacitive loads greater than 100pF; and while on the 1mA I_Q setting, avoid loads less than 5k Ω . Since the output stage is a transconductance output, very large (>10µF) capacitive loads will create a dominant pole and the output will be stable, even with loads that are less than 5k Ω .

Extended Common-Mode Voltage Range (ICL7612/ICL7616)

A common-mode voltage range that includes both V+ and V- is often desirable, especially in single-supply operation. The ICL7612/ICL7616 extended common-mode range op amps are designed specifically to meet this need. The ICL7612 input common-mode voltage range (CMVR) extends beyond both power-supply rails when operated with at least 3V total supply and an I_Q of $10\mu A$ or $100\mu A$. The ICL7616 CMVR includes the negative supply voltage (or ground when operated with a single supply) at an I_Q or $10\mu A$ or $100\mu A$.

PC Board Layout

Careful PC board layout techniques must be used to take full advantage of the very low bias current of the ICL7611 family. The inputs should be encircled with a low-impedance trace, or guard, that is at the same potential as the inputs. In an inverting amplifier, this is normally ground; in a unity-gain buffer connect the guard to the output. A convenient way of guarding the 8-pin TO-99 version of the ICL7611 is to use a 10-pin circle, with the two extra pads on either side of the input pins to provide space for a guard ring (see Figure 8). Assembled boards should be carefully cleaned, and if a high humidity environment is expected, conformally coated.

www.maximintegrated.com Maxim Integrated | 21

Single-Supply Operation

The ICL7611 family will operate from a single 2V to 16V power supply. The common-mode voltage range of the standard amplifier types when operated from a single supply is 1.0V to (V+ - 0.6V) at $10\mu\text{A I}_Q$. At $100\mu\text{A I}_Q$, the CMVR is 1.0V to (V+ - 0.8V), and at 1mA I_Q , the CMVR is 1.3V to (V+ - 1.3V). If this CMVR range is insufficient, use the ICL7612, whose CMVR includes both ground and V+, or the ICL7616, whose CMVR includes ground.

A convenient way to generate a psuedo-ground at V+/2 is to use one op amp of a quad to buffer a V+/2 voltage from a high-impedance resistive divider.

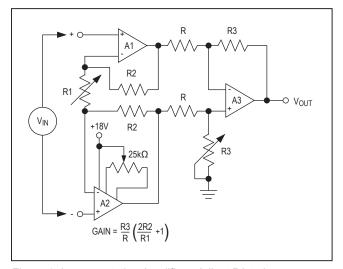


Figure 1. Instrumentation Amplifier—Adjust R3 to improve CMRR. The offset of all three amplifiers is nulled by the offset adjustment of A2.

Low-Voltage Operation

Operation at V_{SUPP} = ±1.0V is only guaranteed at I_Q = 10µA. Output swings to within a few millivolts of the supply rails are achievable for R_L (> or =) 1M Ω . Guaranteed input CMVR is ±0.6V minimum and typically +0.9V to -0.7V at V_{SUPP} = ±1.0V. For applications where greater common-mode range is desirable, see the description of ICL7612 and ICL7616 above.

Applications Information

Note that in no case is I_Q shown. The value of I_Q must be chosen by the designer with regard to frequency response and power dissipation.

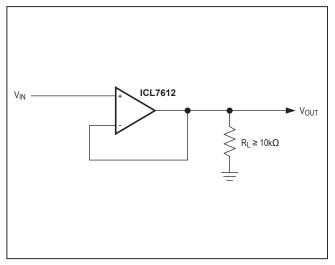


Figure 2. Simple Follower—By using the ICL7612 in these applications, the circuits will follow rail-to-rail inputs

Single/Dual/Triple/Quad **Operational Amplifiers**

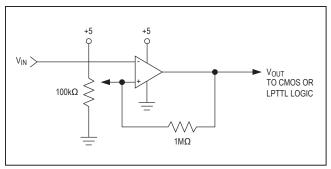


Figure 3. Level Detector—By using the ICL7612 in these applications, the circuits will follow rail-to-rail inputs.

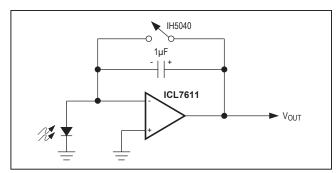


Figure 4. Photocurrent Integrator—Low-leakage currents allow integration times up to several hours.

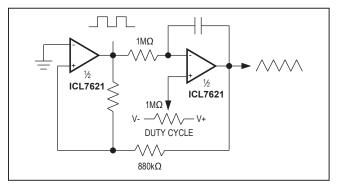


Figure 5. Precise Triangle/Square Wave Generator—The frequency and duty cycle are virtually independent of power supply.

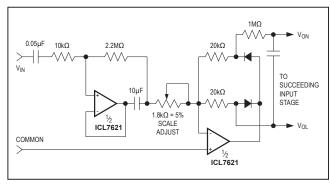


Figure 6. Averaging AC to DC Converter—Recommended for Maxim's ICL7106/ICL7107/ICL7109 A/D Converters.

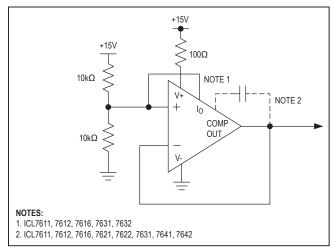


Figure 7. Burn-In and Life Test Circuit

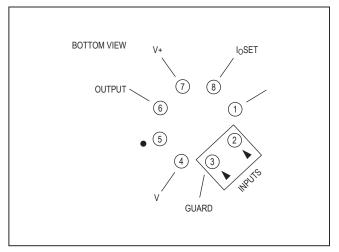


Figure 8. Input Guard for TO-99

Single/Dual/Triple/Quad Operational Amplifiers

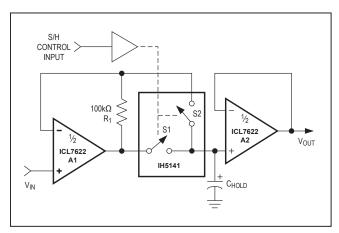


Figure 9. Low Droop Rate Sample and Hold—S2 improves accuracy and acquisition time by including the voltage drop across S1 inside the feedback loop. R1 closes the feedback loop of A1 during the hold phase. The droop rate is [I_{BIAS(AZ)} + I_{LEAK(S1)} + I_{LEAK(S2)}]/C_{HOLD}.

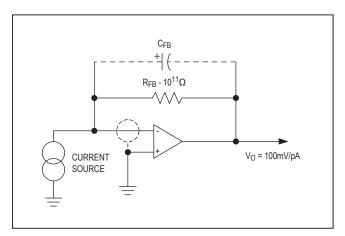


Figure 11. Pico Ammeter—The response time of this curcuit is $R_{FB} \times C_{FB}$, where C_{FB} is the stray capacitance between the output and the inverting terminal of the amplifier.

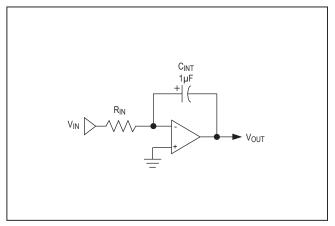


Figure 10. Long-Time Constant Integrator—With $R_{\rm IN}$ = 1011 Ω , the time constant of this integrator is 100,000s. Since the input voltage is converted to a current by $R_{\rm IN}$, the input voltage can far exceed the power-supply range.

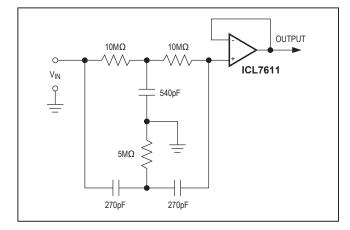
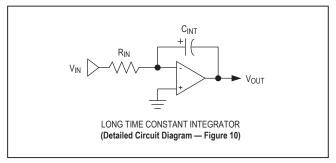
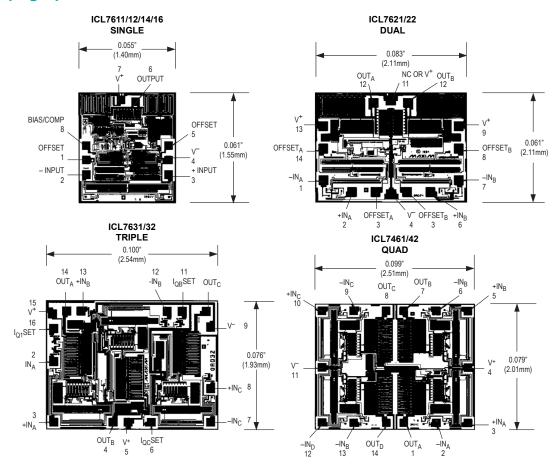




Figure 12. 60Hz Twin "T" Notch Filter—The low 1pA bias current of the ICL7611 allows use of small 540pF and 270pF capacitors, even with a notch frequency of 60Hz. The 60Hz rejection is approximately 40dB.

Typical Operating Circuit

Chip Topographies

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
TO99	T99-8	21-0022	_
8 PDIP	P8-1	<u>21-0043</u>	_
8 SO	S8-2	21-0041	90-0096
8 CDIP	J16-3	21-0045	_
14 PDIP	P14-3	<u>21-0043</u>	_
14 CDIP	J14-3	21-0045	_
16 PDIP	P16-1	<u>21-0043</u>	_
16 SO	S16-1	21-0041	90-0097
16 Wide SO	W16-2	21-0042	90-0107

ICL761X-ICL764X

Single/Dual/Triple/Quad **Operational Amplifiers**

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
2	4/08	Removed all part numbers offered in die form from the Ordering Information	2, 11
3	5/10	Corrected letter grades in EC table headings	13–17
4	7/21	Added ICL7621DESA+ part number, temperature range and pin-package to Ordering Information, updated Package Information table.	1, 2, 25, 26

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.