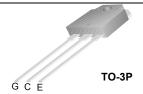


ON Semiconductor

FGA25N120ANTDTU 1200 V, 25 A NPT Trench IGBT

Features


- · NPT Trench Technology, Positive Temperature Coefficient
- Low Saturation Voltage: V_{CE(sat), typ} = 2.0 V
 Q I_C = 25 A and T_C = 25°C
- Low Switching Loss: $E_{off, typ}$ = 0.96 mJ @ I_C = 25 A and T_C = 25°C
- · Extremely Enhanced Avalanche Capability

Description

Using ON Semiconductor's proprietary trench design and advanced NPT technology, the 1200V NPT IGBT offers superior conduction and switching performances, high avalanche ruggedness and easy parallel operation. This device is well suited for the reso-nant or soft switching application such as induction heating, microwave oven.

Applications

· Induction Heating, Microwave Oven

Absolute Maximum Ratings

Symbol	Description		Ratings	Unit
V _{CES}	Collector-Emitter Voltage		1200	V
V _{GES}	Gate-Emitter Voltage		± 20	V
1	Collector Current	@ T _C = 25°C	50	A
I _C	Collector Current	@ T _C = 100°C	25	A
I _{CM (1)}	Pulsed Collector Current		90	A
1	Diode Continuous Forward Current	@ T _C = 25°C	50	A
I _F	Diode Continuous Forward Current	@ T _C = 100°C	25	A
I _{FM}	Diode Maximum Forward Current		150	A
D	Maximum Power Dissipation	@ T _C = 25°C	312	W
P_{D}	Maximum Power Dissipation	@ T _C = 100°C	125	W
T_J	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
T _L	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C

Notes

(1) Repetitive rating: Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	mbol Parameter		Max.	Unit
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction-to-Case		0.4	°C/W
$R_{\theta JC}(DIODE)$	Thermal Resistance, Junction-to-Case		2.0	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		40	°C/W

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FGA25N120ANTDTU-F109	FGA25N120ANTDTU	TO-3PN	Tube	N/A	N/A	30

Electrical Characteristics of the IGBT $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charac	teristics					
I _{CES}	Collector Cut-Off Current	V _{CE} = V _{CES} , V _{GE} = 0 V			3	mA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0 V$			± 250	nA
On Charac	teristics					
V _{GE(th)}	G-E Threshold Voltage	I_C = 25 mA, V_{CE} = V_{GE}	3.5	5.5	7.5	V
` '		I _C = 25 A, V _{GE} = 15 V		2.0		V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	I _C = 25 A, V _{GE} = 15 V, T _C = 125°C		2.15		V
		I _C = 50 A, V _{GE} = 15 V		2.65		V
D	· · · · · · · · · · · · · · · · · · ·	·				
C _{ies}	Input Capacitance	V 00 V V 0 V		3700		pF
C _{oes}	Output Capacitance	$V_{CE} = 30 \text{ V}, V_{GE} = 0 \text{ V},$ f = 1 MHz		130		pF
C _{res}	Reverse Transfer Capacitance			80		pF
	Characteristics Turn-On Delay Time			50		ns
$t_{d(on)}$	Turn-On Delay Time			50		ns
t _r	Rise Time			60		ns
t _{d(off)}	Turn-Off Delay Time	V_{CC} = 600 V, I_{C} = 25 A, R_{G} = 10 Ω , V_{GE} = 15 V, Inductive Load, T_{C} = 25°C		190		ns
t _f	Fall Time			100		ns
E _{on}	Turn-On Switching Loss			4.1		mJ
E _{off}	Turn-Off Switching Loss			0.96		mJ
E _{ts}	Total Switching Loss			5.06		mJ
t _{d(on)}	Turn-On Delay Time			50		ns
t _r	Rise Time			60		ns
t _{d(off)}	Turn-Off Delay Time	V_{CC} = 600 V, I_{C} = 25 A,		200		ns
t _f	Fall Time	$R_G = 10\Omega$, $V_{GE} = 15 V$,		154		ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 125°C		4.3		mJ
E _{off}	Turn-Off Switching Loss			1.5		mJ
E _{ts}	Total Switching Loss			5.8		mJ
Qg	Total Gate Charge	V 000 V I 05 A		200		nC
Q _{ge}	Gate-Emitter Charge	V _{CE} = 600 V, I _C = 25 A, V _{GE} = 15 V		15		nC
Q _{gc}	Gate-Collector Charge			100		nC

Electrical Characteristics of DIODE $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{FM}	Diode Forward Voltage	I _F = 25 A	T _C = 25°C		2.0	3.0	V
			T _C = 125°C		2.1		
t Diede Deverse Desever	Diada Bayaraa Baaayary Tima	$di_F/dt = 200 A/\mu s$	T _C = 25°C		235	350	ns
t _{rr}	Diode Reverse Recovery Time		T _C = 125°C		300		
	Diode Peak Reverse Recovery Current		T _C = 25°C		27	40	Α
'rr rei			T _C = 125°C		31		
Q_{rr}	Diode Reverse Recovery Charge		T _C = 25°C		3130	4700	- nC
			T _C = 125°C		4650		

Typical Performance Characteristics

Figure 1. Typical Output Characteristics

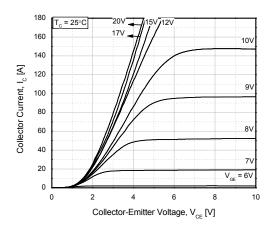


Figure 3. Saturation Voltage vs. Case
Temperature at Variant Current Level

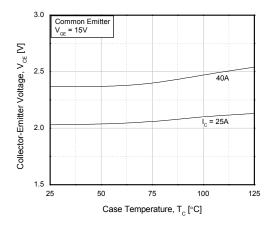


Figure 5. Saturation Voltage vs. V_{GE}

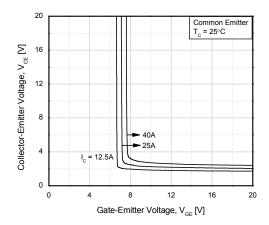


Figure 2. Typical Saturation Voltage Characteristics

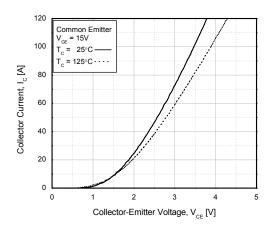


Figure 4. Saturation Voltage vs. V_{GE}

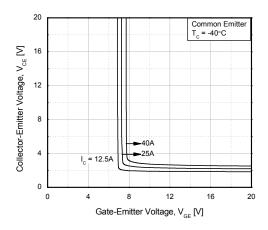
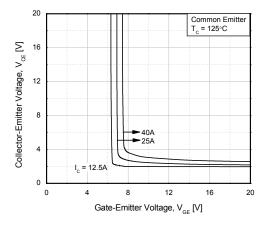



Figure 6. Saturation Voltage vs. V_{GE}

Typical Performance Characteristics (Continued)

Figure 7. Capacitance Characteristics

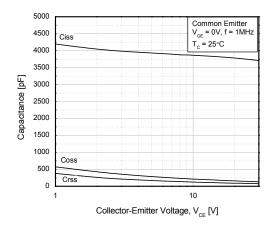


Figure 8. Turn-On Characteristics vs. Gate Resistance

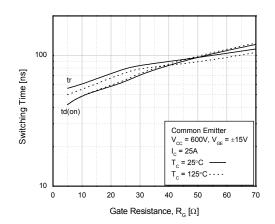


Figure 9. Turn-Off Characteristics vs.
Gate Resistance

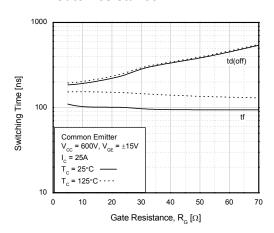


Figure 10. Switching Loss vs. Gate Resistance

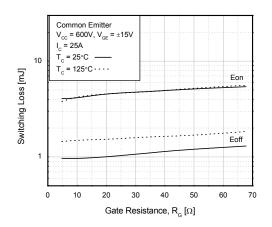


Figure 11. Turn-On Characteristics vs. Collector Current

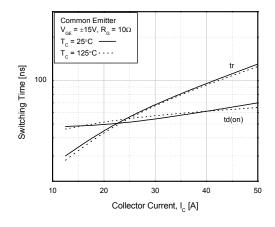
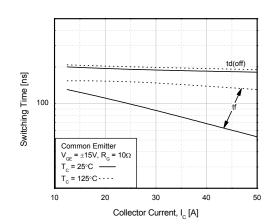
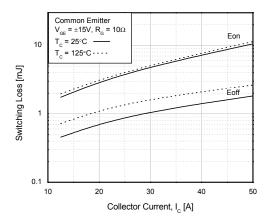




Figure 12. Turn-Off Characteristics vs. Collector Current

Typical Performance Characteristics (Continued)

Figure 13. Switching Loss vs. Collector Current

Figure 14. Gate Charge Characteristics

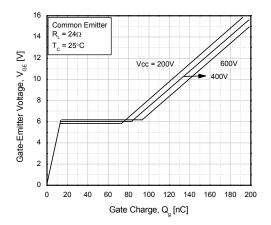


Figure 15. SOA Characteristics

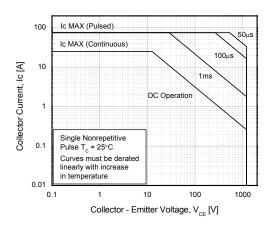


Figure 16. Turn-Off SOA

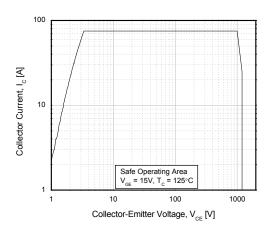
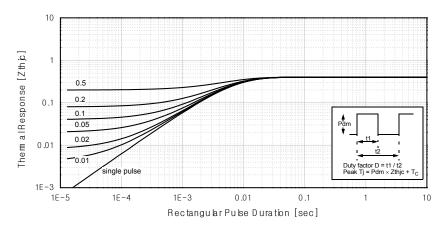
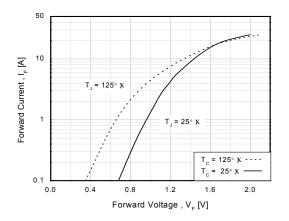
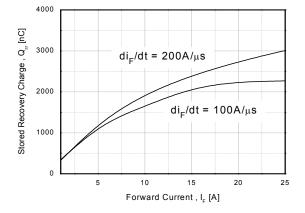



Figure 17. Transient Thermal Impedance of IGBT

Typical Performance Characteristics (Continued)

Figure 18. Forward Characteristics

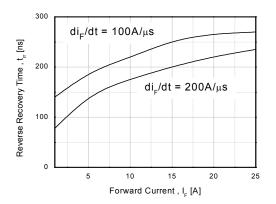

Figure 20. Stored Charge

Figure 19. Reverse Recovery Current

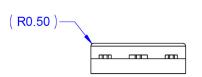


Figure 21. Reverse Recovery Time

Mechanical Dimensions

NOTES: UNLESS OTHERWISE SPECIFIED

- A) THIS PACKAGE CONFORMS TO EIAJ
- SC-65 PACKAGING STANDARD. ALL DIMENSIONS ARE IN MILLIMETERS. DIMENSION AND TOLERANCING PER ASME14.5-2009.
- DIMENSIONS ARE EXCLUSSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSSIONS.
 DRAWING FILE NAME: TO3PN03AREV1.
- FAIRCHILD SEMICONDUCTOR.

Figure 22. TO3PN, 3-Lead, Plastic, EIAJ SC-65

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specif-ically the warranty therein, which covers ON Semiconductor products.

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative