

FDP12N50 / FDPF12N50T N-Channel UniFETTM MOSFET 500 V, 11.5 A, 650 mΩ

Features

- $R_{DS(on)}$ = 550 m Ω (Typ.) @ V_{GS} = 10 V, I_D = 6 A
- Low Gate Charge (Typ. 22 nC)
- Low C_{rss} (Typ. 11 pF)
- 100% Avalanche Tested
- RoHS Compliant


Applications

- LCD/LED/PDP TV
- Lighting
- Uninterruptible Power Supply

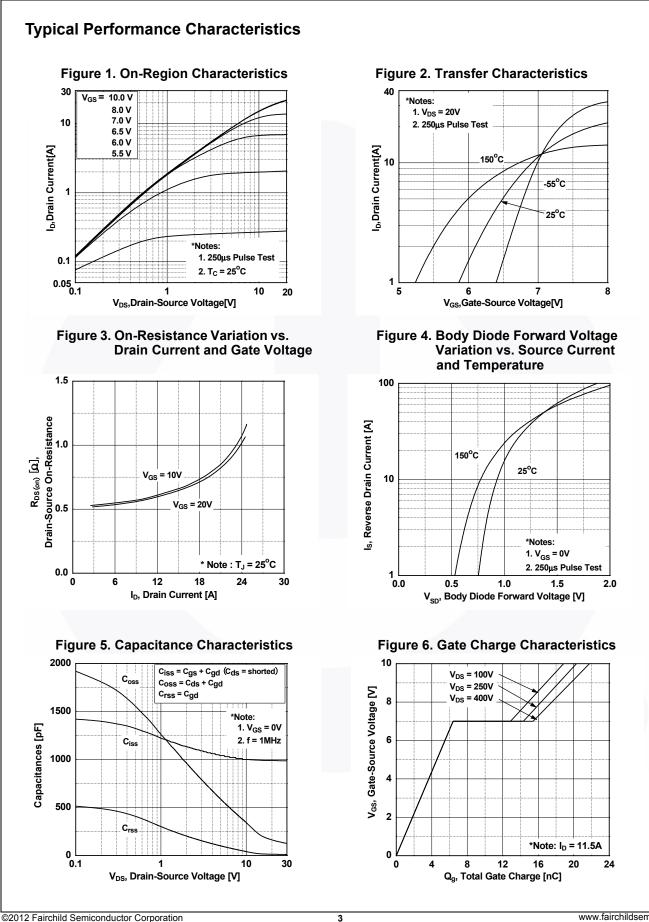
November 2013

Description

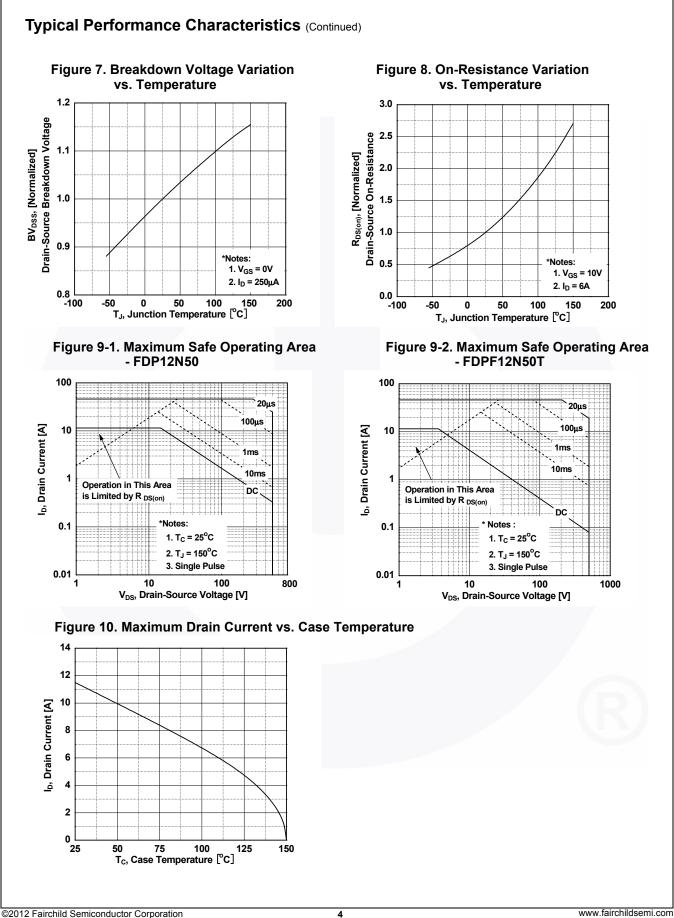
UniFETTM MOSFET is Fairchild Semiconductor's high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.

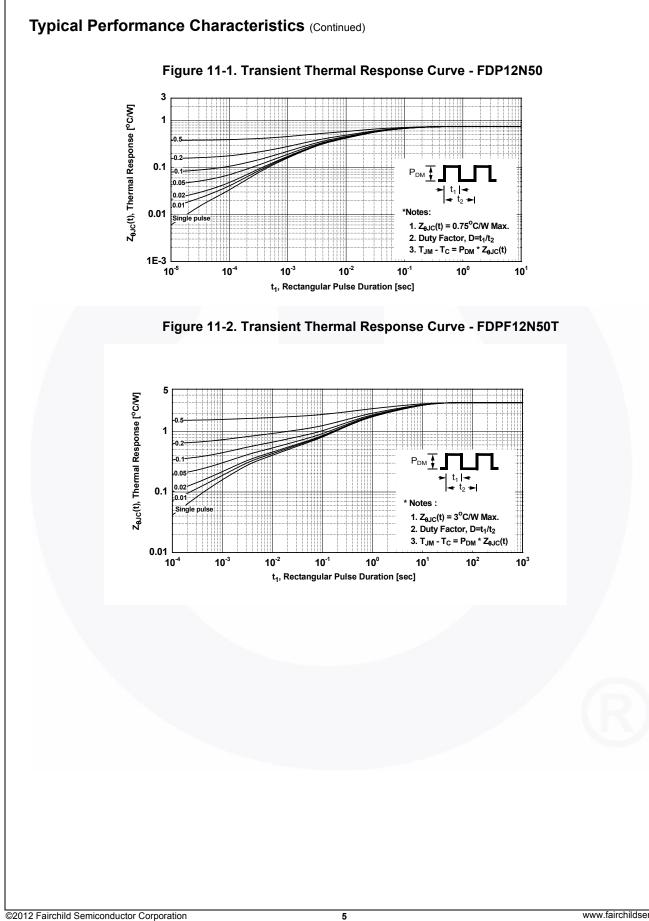
Symbol	Parameter				FDPF12N50T	Unit	
V _{DSS}	Drain to Source Voltage			500		V	
V _{GSS}	Gate to Source Voltage		±30		V		
	DrainCurrent	- Continuous (T _C = 25 ^o C)		11.5	11.5 *	•	
ID		- Continuous (T _C = 100 ^o C)		6.9	6.9 *	A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	46	46 *	А	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		456		mJ		
I _{AR}	Avalanche Current		(Note 1)	11.5		А	
E _{AR}	Repetitive Avalanche Energy		(Note 1)	16.7		mJ	
dv/dt	Peak Diode Recovery dv	/dt	(Note 3)	4.5		V/ns	
D	Dower Dissinction	(T _C = 25°C)		165	42	W	
P _D	Power Dissipation	- Derate Above 25°C		1.33	0.3	W/ºC	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150		°C		
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds			3	00	°C	


*Drain current limited by maximum junction temperature

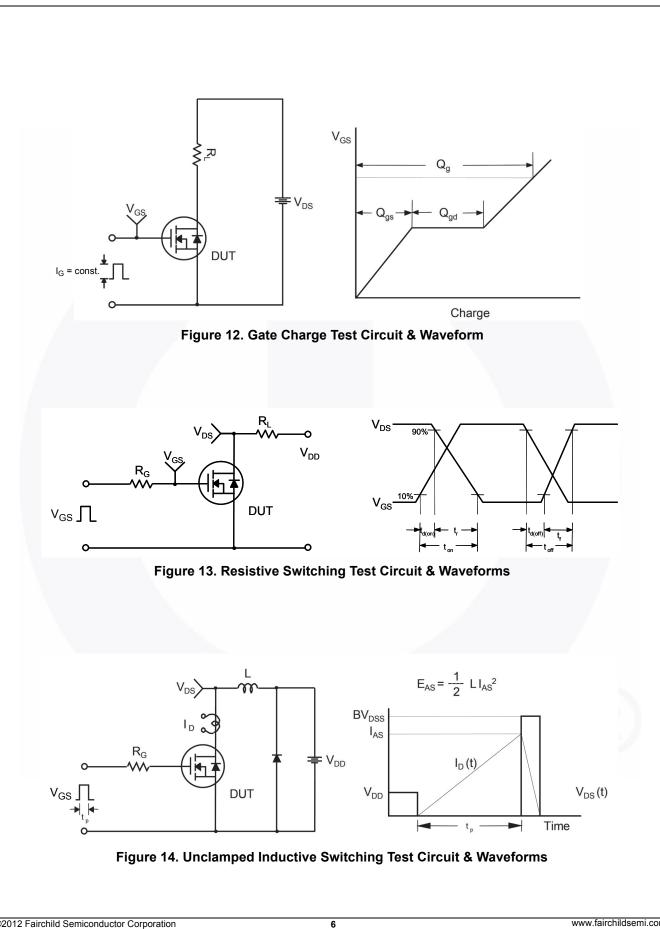
Thermal Characteristics


Symbol	Parameter	FDP12N50	FDPF12N50T	Unit
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	0.75	3.0	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient, Max.	62.5	62.5	°C/W

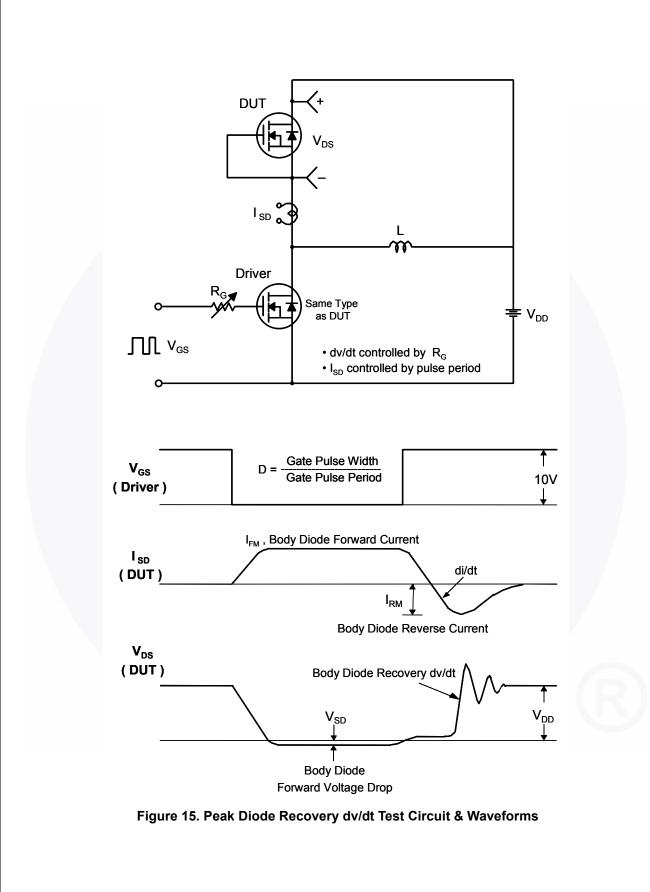
FDP12N50 FDP12N50 T0		Package	O-220 Tube N/A		Тар	e Width	Qua	ntity	
		TO-220			N/A N/A		50 units 50 units		
		TO-220F							
Electrica	al Chara	acteristics T _C = 2	5ºC unless	otherwise noted.					
Symbol		Parameter		Test Condition	ons	Min.	Тур.	Max.	Unit
Off Charad	cteristics	3							
BV _{DSS}	Drain to Source Breakdown Voltage		ige	$I_D = 250 \ \mu A, V_{GS} = 0 \ V, T_J = 25^{\circ}C$ $I_D = 250 \ \mu A, Referenced to 25^{\circ}C$		500	-	-	V
ΔBV_{DSS} / ΔT_J						-	0.5	-	V/°C
	Zara Ca	ta Valtaga Drain Current		V _{DS} = 500 V, V _{GS} = 0 V	'	-	-	1	
IDSS	Zero Ga	te Voltage Drain Current		$V_{DS} = 400 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$		-	-	10	μA
I _{GSS}	Gate to I	Body Leakage Current		V_{GS} = ±30 V, V_{DS} = 0 V	'	-	-	±100	nA
On Charac	cteristics	3							
V _{GS(th)}	Gate Th	reshold Voltage		V _{GS} = V _{DS} , I _D = 250 μA	\	3.0	-	5.0	V
R _{DS(on)}		rain to Source On Resista	ance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 6 \text{ A}$		-	0.55	0.65	Ω
9 _{FS}	Forward	Transconductance		$V_{DS} = 40 \text{ V}, \text{ I}_{D} = 6 \text{ A}$		-	11.5	-	S
Dynamic (Characte	ristics							
C _{iss}	1	pacitance				-	985	1315	pF
C _{oss}	-	Capacitance		$-V_{DS} = 25 V, V_{GS} = 0 V,$		-	140	190	pF
				f = 1 MHz	-				-
	Reverse	Transfer Capacitance				-	11	17	pF
C _{rss}		Transfer Capacitance te Charge at 10V	_		А,	-	11 22	17 30	pF nC
C _{rss} Q _g	Total Ga			V _{DS} = 400 V, I _D = 11.5 V _{GS} = 10 V	A,	-			
C _{rss} Q _g Q _{gs}	Total Ga Gate to S	te Charge at 10V		V _{DS} = 400 V, I _D = 11.5	A, (Note 4)	- - -	22		nC
C _{rss} Q _g Q _{gs} Q _{gd}	Total Ga Gate to S Gate to I	te Charge at 10V Source Gate Charge Drain "Miller" Charge		V _{DS} = 400 V, I _D = 11.5		-	22 6	30 -	nC nC
C _{rss} Q _g Q _{gs} Q _{gd} Switching	Total Ga Gate to S Gate to I Charact	te Charge at 10V Source Gate Charge Drain "Miller" Charge		V _{DS} = 400 V, I _D = 11.5		- - - -	22 6	30 -	nC nC
C _{rss} Q _g Q _{gs} Q _{gd} Switching	Total Ga Gate to S Gate to I Charact Turn-On	te Charge at 10V Source Gate Charge Drain "Miller" Charge		V _{DS} = 400 V, I _D = 11.5 V _{GS} = 10 V V _{DD} = 250 V, I _D = 11.5	(Note 4)		22 6 9	30 - -	nC nC nC
$\begin{array}{c} C_{rss} \\ Q_{g} \\ Q_{gs} \\ Q_{gd} \\ \\ \hline \textbf{Switching} \\ t_{d(on)} \\ t_{r} \\ \hline t_{r} \\ \hline t_{r} \\ \hline \end{array}$	Total Ga Gate to S Gate to I Charact Turn-On Turn-On	te Charge at 10V Source Gate Charge Drain "Miller" Charge teristics Delay Time		V _{DS} = 400 V, I _D = 11.5 V _{GS} = 10 V	(Note 4)		22 6 9 24	30 - - 60	nC nC nC nC
$\frac{C_{rss}}{Q_{g}}$ $\frac{Q_{gs}}{Q_{gd}}$ Switching $t_{d(on)}$	Total Ga Gate to S Gate to I Charact Turn-On Turn-On Turn-Off	te Charge at 10V Source Gate Charge Drain "Miller" Charge teristics Delay Time Rise Time		V _{DS} = 400 V, I _D = 11.5 V _{GS} = 10 V V _{DD} = 250 V, I _D = 11.5	(Note 4)		22 6 9 24 50	30 - - 60 110	nC nC nC nC nS ns
$\begin{array}{c} C_{rss} \\ \hline Q_g \\ \hline Q_{gs} \\ \hline Q_{gd} \\ \hline \\ $	Total Ga Gate to S Gate to I Charact Turn-On Turn-Off Turn-Off	te Charge at 10V Source Gate Charge Drain "Miller" Charge teristics Delay Time Rise Time Delay Time Fall Time		V _{DS} = 400 V, I _D = 11.5 V _{GS} = 10 V V _{DD} = 250 V, I _D = 11.5	(Note 4)	-	22 6 9 24 50 45	30 - - 60 110 100	nC nC nC nC nS ns
$\begin{array}{c} C_{rss} \\ Q_{g} \\ Q_{gs} \\ Q_{gd} \\ \hline \\ Switching \\ t_{d(on)} \\ t_{r} \\ t_{d(off)} \\ t_{f} \\ \hline \\ Drain-Sou \\ \hline \end{array}$	Total Ga Gate to S Gate to I Charact Turn-On Turn-Off Turn-Off	te Charge at 10V Source Gate Charge Drain "Miller" Charge teristics Delay Time Rise Time Delay Time	Jurce Diode	$V_{DS} = 400 \text{ V}, \text{ I}_{D} = 11.5$ $V_{GS} = 10 \text{ V}$ $V_{DD} = 250 \text{ V}, \text{ I}_{D} = 11.5$ $V_{GS} = 10 \text{ V}, \text{ R}_{G} = 25 \Omega$	(Note 4)	-	22 6 9 24 50 45	30 - - 60 110 100 70	nC nC nC nC nS ns
$\begin{array}{c} C_{rss} \\ Q_{g} \\ Q_{gs} \\ Q_{gd} \\ \hline \\ Switching \\ t_{d(on)} \\ t_{r} \\ t_{d(off)} \\ t_{f} \\ \hline \\ Drain-Sou \\ l_{s} \\ \hline \end{array}$	Total Ga Gate to S Gate to I Charact Turn-On Turn-Off Turn-Off Turn-Off Itrce Diod	te Charge at 10V Source Gate Charge Drain "Miller" Charge teristics Delay Time Rise Time Delay Time Fall Time e Characteristics		$V_{DS} = 400 \text{ V}, \text{ I}_{D} = 11.5$ $V_{GS} = 10 \text{ V}$ $V_{DD} = 250 \text{ V}, \text{ I}_{D} = 11.5$ $V_{GS} = 10 \text{ V}, \text{ R}_{G} = 25 \Omega$ Forward Current	(Note 4)	-	22 6 9 24 50 45	30 - - 60 110 100	nC nC nC nS ns ns ns
C _{rss} Q _g Q _{gs} Switching t _{d(on)} t _r t _{d(off)} t _f Drain-Sou I _S	Total Ga Gate to S Gate to I Charact Turn-On Turn-Off Turn-Off Turn-Off Itrce Diod Maximun Maximun	te Charge at 10V Source Gate Charge Drain "Miller" Charge teristics Delay Time Rise Time Delay Time Fall Time Ie Characteristics n Continuous Drain to Sc	Diode For	$V_{DS} = 400 \text{ V}, \text{ I}_{D} = 11.5$ $V_{GS} = 10 \text{ V}$ $V_{DD} = 250 \text{ V}, \text{ I}_{D} = 11.5 \text{ A}$ $V_{GS} = 10 \text{ V}, \text{ R}_{G} = 25 \Omega$ Forward Current ward Current	(Note 4)	- - - -	22 6 9 24 50 45	30 - - 60 110 100 70 11.5	nC nC nC nS ns ns ns A
$\begin{array}{c} C_{rss} \\ Q_{g} \\ Q_{gs} \\ Q_{gd} \\ \hline \\ Switching \\ t_{d(on)} \\ t_{r} \\ t_{d(off)} \\ t_{f} \\ \hline \\ Drain-Sou \\ l_{s} \\ \hline \end{array}$	Total Ga Gate to S Gate to I Charact Turn-On Turn-Off Turn-Off Turn-Off Maximun Maximun Drain to S	te Charge at 10V Source Gate Charge Drain "Miller" Charge teristics Delay Time Rise Time Delay Time Fall Time Ie Characteristics In Continuous Drain to Source	Diode For	$V_{DS} = 400 \text{ V}, \text{ I}_{D} = 11.5$ $V_{GS} = 10 \text{ V}$ $V_{DD} = 250 \text{ V}, \text{ I}_{D} = 11.5$ $V_{GS} = 10 \text{ V}, \text{ R}_{G} = 25 \Omega$ Forward Current	(Note 4)	• • • •	22 6 9 24 50 45	30 - - 60 110 100 70 11.5 46	nC nC nC ns ns ns ns A A

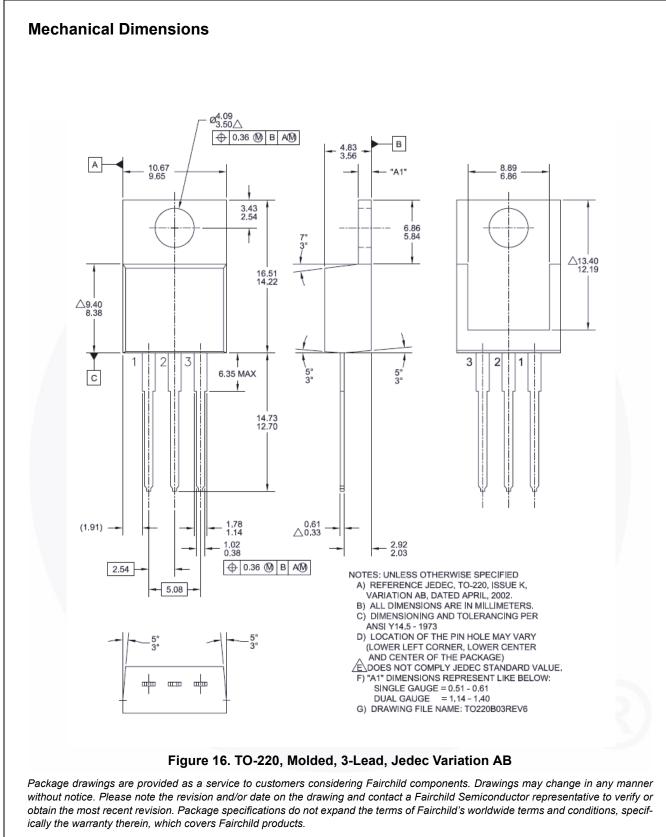

Downloaded from Arrow.com.

FDP12N50 / FDPF12N50T Rev. C1



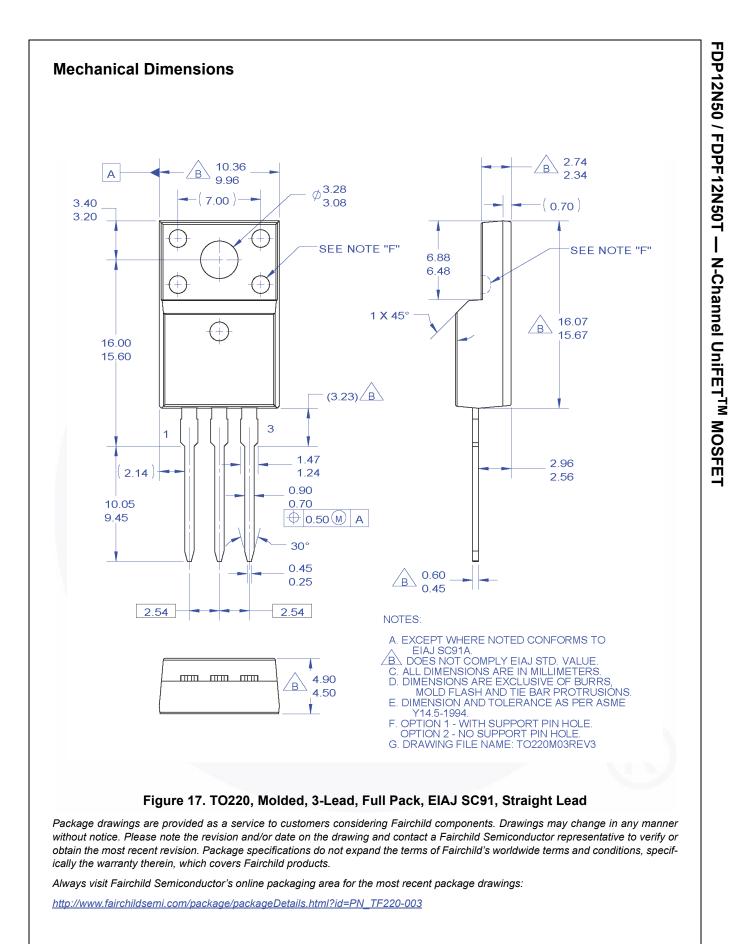
^{©2012} Fairchild Semiconductor Corporati FDP12N50 / FDPF12N50T Rev. C1




Downloaded from Arrow.com.

FDP12N50 / FDPF12N50T — N-Channel UniFETTM MOSFET

FDP12N50 / FDPF12N50T — N-Channel UniFETTM MOSFET



Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT220-003

Downloaded from Arrow.com.

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™	F-PFS™	-215
AX-CAP [®] *	FRFET®	®
BitSiC™	Global Power Resource SM	PowerTrench [®]
Build it Now™	GreenBridge™	PowerXS™
CorePLUS™	Green FPS™	Programmable A
CorePOWER™	Green FPS™ e-Series™	QFET®
CROSSVOLT™	Gmax™	QS™
CTL™	GTO™	Quiet Series™
Current Transfer Logic™	IntelliMAX™	RapidConfigure™
DEUXPEED®	ISOPLANAR™	[™]
Dual Cool™	Marking Small Speakers Sound Louder	
EcoSPARK [®]	and Better™	Saving our world
EfficentMax™	MegaBuck™	SignalWise™
ESBC™	MICROCOUPLER™	SmartMax™
F R	MicroFET™	SMART START
+	MicroPak™	Solutions for You
Fairchild [®]	MicroPak2™	SPM®
Fairchild Semiconductor®	MillerDrive™	STEALTH™
FACT Quiet Series™	MotionMax™	SuperFET®
FACT®	mWSaver [®]	SuperSOT™-3
FAST®	OptoHiT™	SuperSOT™-6
FastvCore™	OPTOLOGIC®	SuperSOT™-8
FETBench™	OPTOPLANAR®	SupreMOS®
FPS™		SyncFET™

Active Droop™ тм d, 1mW/W/kW at a time™ тм our Success™ UHC® UniFFT™ VCX™

ESYSTEM^{®*} GENERAL TinyBoost[®] TinyBuck® TinyCalc™ TinyLogic® TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* uSerDes™ Ultra FRFET™

Sync-Lock™

FDP12N50 / FDPF12N50T ---

N-Channel UniFETTM MOSFET

VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1 intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.