ELECTRICAL CHARACTERISTICS

(T_A = 25° C unless otherwise noted)

-						
Symbol	Parameter					
I _{PP}	Maximum Reverse Peak Pulse Current					
V _C	Clamping Voltage @ IPP					
V _{RWM}	Working Peak Reverse Voltage					
I _R Maximum Reverse Leakage Current @ V _{R¹}						
V _{BR}	Breakdown Voltage @ I _T					
Ι _Τ	Test Current					
١ _F	Forward Current					
V _F	Forward Voltage @ I _F					
P _{pk}	Peak Power Dissipation					
С	Max. Capacitance $@V_R = 0$ and f = 1 MHz					

*See Application Note AND8308/D for detailed explanations of datasheet parameters.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted, V_F = 1.1 V Max. @ I_F = 10 mA for all types)

		V _{RWM} (V)	I _R (μΑ) @ V _{RWM}	V _{BR} (V) @ I _T (Note 2)	ե	V _C (V) @ I _{PP} = 5.0 A [†]	V _C (V) @ Max I _{PP} †	І _{РР} (А)†	P _{pk} (W) [†]	C (pF)	v _c
Device**	Device Marking	Мах	Max	Min	mA	Тур	Мах	Мах	Мах	Тур	Per IEC61000-4-2 (Note 3)
ESD5Z2.5T1, G*	ZD	2.5	6.0	4.0	1.0	6.5	10.9	11.0	120	145	Figures 1 and 2
ESD5Z3.3T1, G*	ZE	3.3	0.05	5.0	1.0	8.4	14.1	11.2	158	105	(Note 4)
ESD5Z5.0T1, G*	ZF	5.0	0.05	6.2	1.0	11.6	18.6	9.4	174	80	
ESD5Z6.0T1, G*	ZG	6.0	0.01	6.8	1.0	12.4	20.5	8.8	181	70	
ESD5Z7.0T1, G*	ZH	7.0	0.01	7.5	1.0	13.5	22.7	8.8	200	65	
ESD5Z12T1, G*	ZM	12	0.01	14.1	1.0	17	25	9.6	240	55	

* The "G" suffix indicates Pb-Free package available.

**Other voltages available upon request.

†Surge current waveform per Figure 5.

2. V_{BR} is measured with a pulse test current I_T at an ambient temperature of 25°C.

3. For test procedure see Figures 3 and 4 and Application Note AND8307/D.

4. ESD5Z5.0T1G shown below. Other voltages available upon request.

ESD5Z2.5T1 SERIES

IEC 61000-4-2 Spec.

Level	Test Voltage (kV)	First Peak Current (A)	Current at 30 ns (A)	Current at 60 ns (A)	
1	2	7.5	4	2	
2	4	15	8	4	
3	6	22.5	12	6	
4	8	30	16	8	

Figure 3. IEC61000-4-2 Spec

Figure 4. Diagram of ESD Test Setup

The following is taken from Application Note AND8308/D – Interpretation of Datasheet Parameters for ESD Devices.

ESD Voltage Clamping

For sensitive circuit elements it is important to limit the voltage that an IC will be exposed to during an ESD event to as low a voltage as possible. The ESD clamping voltage is the voltage drop across the ESD protection diode during an ESD event per the IEC61000-4-2 waveform. Since the IEC61000-4-2 was written as a pass/fail spec for larger

systems such as cell phones or laptop computers it is not clearly defined in the spec how to specify a clamping voltage at the device level. ON Semiconductor has developed a way to examine the entire voltage waveform across the ESD protection diode over the time domain of an ESD pulse in the form of an oscilloscope screenshot, which can be found on the datasheets for all ESD protection diodes. For more information on how ON Semiconductor creates these screenshots and how to interpret them please refer to AND8307/D.

PACKAGE DIMENSIONS

SOD-523 CASE 502-01 ISSUE C

NOTES DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1. 1982

 CONTROLLING DIMENSION: MILLIMETER.
MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM TURING AND THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	МІ	LLIMETE	RS	INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	1.10	1.20	1.30	0.043	0.047	0.051	
в	0.70	0.80	0.90	0.028	0.032	0.035	
С	0.50	0.60	0.70	0.020	0.024	0.028	
D	0.25	0.30	0.35	0.010	0.012	0.014	
J	0.07	0.14	0.20	0.0028	0.0055	0.0079	
к	0.15	0.20	0.25	0.006	0.008	0.010	
S	1.50	1.60	1.70	0.059	0.063	0.067	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or other rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications are scene to the right of the set of the se Intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative