December 2013 # 74LCX574 Low Voltage Octal D-Type Flip-Flop with 5V Tolerant Inputs and Outputs #### **Features** - 5V tolerant inputs and outputs - 2.3V-3.6V V_{CC} specifications provided - 7.5ns t_{PD} max. $(V_{CC} = 3.3V)$, $10\mu A I_{CC}$ max. - Power down high impedance inputs and outputs - Supports live insertion/withdrawal⁽¹⁾ - ± 24 mA output drive ($V_{CC} = 3.0$ V) - Implements proprietary noise/EMI reduction circuitry - Latch-up performance exceeds JEDEC 78 conditions - ESD performance - Human body model > 2000V - Machine model > 200V #### Note: To ensure the high impedance state during power up or down, OE should be tied to V_{CC} through a pull-up resistor: the minimum value of the resistor is determined by the current-sourcing capability of the driver. # **General Description** The LCX574 is a high-speed, low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable (\overline{OE}) . The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition. The LCX574 is functionally identical to the LCX374 except for the pinouts. The LCX574 is designed for low voltage applications with capability of interfacing to a 5V signal environment. The LCX574 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation. # **Ordering Information** | Order
Number | Package
Number | Package Description | |----------------------------|-------------------|---| | 74LCX574WM | M20B | 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide | | 74LCX574SJ | M20D | 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide | | 74LCX574BQX ⁽²⁾ | MLP20B | 20-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 4.5mm | | 74LCX574MSA | MSA20 | 20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide | | 74LCX574MTC | MTC20 | 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide | #### Note: 2. DQFN package available in Tape and Reel only. Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number. All packages are lead free per JEDEC: J-STD-020B standard. ©2006 Fairchild Semiconductor Corporation 74LCX574 Rev. 1.6.1 # **Connection Diagrams** Pin Assignments for SOIC, SOP, SSOP, TSSOP #### Pad Assignments for DQFN # **Pin Descriptions** | Pin Names | Description | |--------------------------------|-----------------------------| | D ₀ –D ₇ | Data Inputs | | СР | Clock Pulse Input | | ŌĒ | 3-STATE Output Enable Input | | O ₀ -O ₇ | 3-STATE Outputs | | DAP | No Connect | Note: DAP (Die Attach Pad) # **Logic Symbol** #### **Truth Table** | Ir | puts | ; | Internal | Outputs | | |----|------|---|----------|----------------|-------------------| | ŌĒ | СР | D | Q | O _n | Function | | Н | Н | L | NC | Z | Hold | | Н | Н | Н | NC | Z | Hold | | Н | ~ | L | Н | Z | Load | | Н | ~ | Н | L | Z | Load | | L | ~ | L | Н | L | Data Available | | L | ~ | Н | L | Н | Data Available | | L | Н | L | NC | NC | No Change in Data | | L | Н | Н | NC | NC | No Change in Data | H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance ✓ = LOW-to-HIGH Transition NC = No Change # **Functional Description** The LCX574 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable $(\overline{\text{OE}})$ LOW, the contents of the eight flip-flops are available at the outputs. When $\overline{\text{OE}}$ is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\text{OE}}$ input does not affect the loading of the flip-flops. # **Logic Diagram** Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays. # **Absolute Maximum Ratings** Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. | Symbol | Parameter | Conditions | Value | Units | |------------------|----------------------------------|--|--------------------------|-------| | V _{CC} | Supply Voltage | | -0.5 to +7.0 | V | | V _I | DC Input Voltage | | -0.5 to +7.0 | V | | Vo | DC Output Voltage | Output in 3-STATE | -0.5 to +7.0 | V | | | | Output in HIGH or LOW State ⁽³⁾ | -0.5 to $V_{CC} + 0.5$ | | | I _{IK} | DC Input Diode Current | V _I < GND | -50 | mA | | I _{OK} | DC Output Diode Current | V _O < GND | -50 | mA | | | | $V_O > V_{CC}$ | +50 | | | Io | DC Output Source/Sink Current | | ±50 | mA | | I _{CC} | DC Supply Current per Supply Pin | | ±100 | mA | | I _{GND} | DC Ground Current per Ground Pin | | ±100 | mA | | T _{STG} | Storage Temperature | | -65 to +150 | °C | # Recommended Operating Conditions⁽⁴⁾ The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings. | Symbol | Parameter | Conditions | Min. | Max. | Units | |----------------------------------|--------------------------------|---------------------------------------|------|-----------------|-------| | V _{CC} | Supply Voltage | Operating | 2.0 | 3.6 | V | | | | Data Retention | 1.5 | 3.6 | | | V _I | Input Voltage | | 0 | 5.5 | V | | Vo | Output Voltage | HIGH or LOW State | 0 | V _{CC} | V | | | | 3-STATE | 0 | 5.5 | | | I _{OH} /I _{OL} | Output Current | V _{CC} = 3.0V–3.6V | | ±24 | mA | | | | $V_{CC} = 2.7V - 3.0V$ | | ±12 | | | | | $V_{CC} = 2.3V - 2.7V$ | / | ±8 | | | T _A | Free-Air Operating Temperature | | -40 | 85 | °C | | Δt/ΔV | Input Edge Rate | $V_{IN} = 0.8V - 2.0V, V_{CC} = 3.0V$ | 0 | 10 | ns/V | #### Notes: - 3. I_O Absolute Maximum Rating must be observed. - 4. Unused inputs must be held HIGH or LOW. They may not float. ## **DC Electrical Characteristics** | | | | | $T_A = -40^{\circ}C$ | to +85°C | | |------------------|---------------------------------------|---------------------|---|-----------------------|----------|-------| | Symbol | Parameter | V _{CC} (V) | Conditions | Min. | Max. | Units | | V _{IH} | HIGH Level Input Voltage | 2.3–2.7 | | 1.7 | | V | | | | 2.7–3.6 | | 2.0 | | | | V _{IL} | LOW Level Input Voltage | 2.3–2.7 | | | 0.7 | V | | | | 2.7–3.6 | | | 0.8 | | | V _{OH} | HIGH Level Output Voltage | 2.3–3.6 | $I_{OH} = -100 \mu A$ | V _{CC} - 0.2 | | V | | | | 2.3 | $I_{OH} = -8mA$ | 1.8 | | 1 | | | | 2.7 | $I_{OH} = -12mA$ | 2.2 | | 1 | | | | 3.0 | $I_{OH} = -18mA$ | 2.4 | | 1 | | | | | $I_{OH} = -24mA$ | 2.2 | | 1 | | V _{OL} | LOW Level Output Voltage | 2.3-3.6 | $I_{OL} = 100 \mu A$ | | 0.2 | V | | | | 2.3 | I _{OL} = 8mA | | 0.6 | 1 | | | | 2.7 | I _{OL} = 12mA | | 0.4 | | | | | 3.0 | I _{OL} = 16mA | | 0.4 | | | | | | $I_{OL} = 24mA$ | | 0.55 | | | I _I | Input Leakage Current | 2.3-3.6 | $0 \le V_I \le 5.5V$ | | ±5.0 | μΑ | | l _{OZ} | 3-STATE Output Leakage | 2.3–3.6 | $0 \le V_O \le 5.5V$, $V_I = V_{IH}$ or V_{IL} | | ±5.0 | μΑ | | I _{OFF} | Power-Off Leakage Current | 0 | V_I or $V_O = 5.5V$ | | 10 | μA | | I _{CC} | Quiescent Supply Current | 2.3–3.6 | $V_I = V_{CC}$ or GND | | 10 | μA | | | | 2.3–3.6 | $3.6V \le V_I, V_O \le 5.5V^{(5)}$ | | ±10 | | | ΔI_{CC} | Increase in I _{CC} per Input | 2.3-3.6 | $V_{IH} = V_{CC} - 0.6V$ | | 500 | μΑ | # **AC Electrical Characteristics** | $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$ | | | | | | | | | |--|--|------|---|------|--|------|--|-------| | | | | $V_{CC} = 3.3V \pm 0.3V,$
$C_{L} = 50pF$ | | $egin{aligned} \mathbf{V_{CC}} &= \mathbf{2.7V,} \\ \mathbf{C_L} &= \mathbf{50pF} \end{aligned}$ | | $V_{CC} = 2.5 \pm 0.2V,$
$C_L = 30pF$ | | | Symbol | Parameter | Min. | Max. | Min. | Max. | Min. | Max. | Units | | f _{MAX} | Maximum Clock Frequency | 150 | | | | | | MHz | | t _{PHL} , t _{PLH} | Propagation Delay,
CP to O _n | 1.5 | 8.5 | 1.5 | 9.5 | 1.5 | 10.5 | ns | | t _{PZL} , t _{PZH} | Output Enable Time | 1.5 | 8.5 | 1.5 | 9.5 | 1.5 | 10.5 | ns | | t_{PLZ},t_{PHZ} | Output Disable Time | 1.5 | 6.5 | 1.5 | 7.0 | 1.5 | 7.8 | ns | | t _S | Setup Time | 2.5 | | 2.5 | | 4.0 | | ns | | t _H | Hold Time | 1.5 | | 1.5 | | 2.0 | | ns | | t _W | Pulse Width | 3.3 | | 3.3 | | 4.0 | | ns | | toshL, toshH | Output to Output Skew ⁽⁶⁾ | | 1.0 | | | | | ns | #### Notes: - 5. Outputs disabled or 3-STATE only. - 6. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). # **Dynamic Switching Characteristics** | | | | | $T_A = 25^{\circ}C$ | | |------------------|---|---------------------|---|---------------------|-------| | Symbol | Parameter | V _{CC} (V) | Conditions | Typical | Units | | V _{OLP} | Quiet Output Dynamic Peak V _{OL} | 3.3 | $C_L = 50 pF, V_{IH} = 3.3 V, V_{IL} = 0 V$ | 0.8 | V | | | | 2.5 | $C_L = 30pF, V_{IH} = 2.5V, V_{IL} = 0V$ | 0.6 | | | V _{OLV} | Quiet Output Dynamic Valley V _{OL} | 3.3 | $C_L = 50pF, V_{IH} = 3.3V, V_{IL} = 0V$ | -0.8 | V | | | | 2.5 | $C_L = 30pF, V_{IH} = 2.5V, V_{IL} = 0V$ | -0.6 | | # Capacitance | Symbol | Parameter | Conditions | Typical | Units | |------------------|-------------------------------|---|---------|-------| | C _{IN} | Input Capacitance | $V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$ | 7 | pF | | C _{OUT} | Output Capacitance | $V_{CC} = 3.3V, V_{I} = 0V \text{ or } V_{CC}$ | 8 | pF | | C _{PD} | Power Dissipation Capacitance | $V_{CC} = 3.3V, V_{I} = 0V \text{ or } V_{CC}, f = 10MHz$ | 25 | pF | # AC Loading and Waveforms (Generic for LCX Family) Figure 1. AC Test Circuit (C_L includes probe and jig capacitance) | Test | Switch | |-------------------------------------|---| | t _{PLH} , t _{PHL} | Open | | t _{PZL} , t _{PLZ} | 6V at $V_{CC} = 3.3 \pm 0.3V$
$V_{CC} \times 2$ at $V_{CC} = 2.5 \pm 0.2V$ | | t _{PZH} , t _{PHZ} | GND | # Waveform for Inverting and Non-Inverting Functions # Propagation Delay, Pulse Width and t_{rec} Waveforms 3-STATE Output Low Enable and Disable Times for Logic # 3-STATE Output High Enable and Disable Times for Logic # Setup Time, Hold Time and Recovery Time for Logic t_{rise} and t_{fall} Figure 2. Waveforms (Input Characteristics; f = 1MHz, $t_r = t_f = 3ns$) | | V _{cc} | | | | | |-----------------|------------------------|------------------------|-------------------------|--|--| | Symbol | $3.3V \pm 0.3V$ | 2.7V | 2.5V ± 0.2V | | | | V _{mi} | 1.5V | 1.5V | V _{CC} /2 | | | | V _{mo} | 1.5V | 1.5V | V _{CC} /2 | | | | V _x | V _{OL} + 0.3V | V _{OL} + 0.3V | V _{OL} + 0.15V | | | | V _v | V _{OH} – 0.3V | V _{OH} – 0.3V | V _{OH} – 0.15V | | | # **Tape and Reel Specification** ### **Tape Format for DQFN** | Package
Designator | Tape
Section | Number
Cavities | Cavity
Status | Cover Tape
Status | |-----------------------|--------------------|--------------------|------------------|----------------------| | BQX | Leader (Start End) | 125 (typ) | Empty | Sealed | | | Carrier | 3000 | Filled | Sealed | | | Trailer (Hub End) | 75 (typ) | Empty | Sealed | #### Tape Dimensions inches (millimeters) # DIMENSIONS ARE IN MILLIMETERS #### NOTES: unless otherwise specified - 1. Cummulative pitch for feeding holes and cavities (chip pockets) not to exceed 0.008[0.20] over 10 pitch span. - 2. Smallest allowable bending radius. - 3. Thru hole inside cavity is centered within cavity. - 4. Tolerance is $\pm 0.002[0.05]$ for these dimensions on all 12mm tapes. - 5. Ao and Bo measured on a plane 0.120[0.30] above the bottom of the pocket. - 6. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier. - 7. Pocket position relative to sprocket hole measured as true position of pocket. Not pocket hole. - Controlling dimension is millimeter. Diemension in inches rounded. #### Reel Dimensions inches (millimeters) | Tape Size | Α | В | С | D | N | W1 | W2 | |-----------|--------------|--------------|---------------|---------------|---------------|--------------|--------------| | 12mm | 13.0 (330.0) | 0.059 (1.50) | 0.512 (13.00) | 0.795 (20.20) | 2.165 (55.00) | 0.488 (12.4) | 0.724 (18.4) | # **Physical Dimensions** 13.00 12.60 11.43 В 9.50 10.65 7.60 10.00 7.40 PIN ONE 0.35 INDICATOR **⊕** 0.25 **M** C B A LAND PATTERN RECOMMENDATION 2.65 MAX SEE DETAIL A 0.33 0.20 △ 0.10 C 0.30 0.10 0.75 SEATING PLANE NOTES: UNLESS OTHERWISE SPECIFIED (R0.10) A) THIS PACKAGE CONFORMS TO JEDEC GAGE PLANE MS-013, VARIATION AC, ISSUE E (R0.10) B) ALL DIMENSIONS ARE IN MILLIMETERS. 0.25 C) DIMENSIONS DO NOT INCLUDE MOLD FLASH OR BURRS. D) CONFORMS TO ASME Y14.5M-1994 0.40 SEATING PLANE E) LANDPATTERN STANDARD: SOIC127P1030X265-20L (1.40)DETAIL A F) DRAWING FILENAME: MKT-M20BREV3 Figure 3. 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. LAND PATTERN RECOMMENDATION DIMENSIONS ARE IN MILLIMETERS # NOTES: - A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998. B. DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. M20DREVC Figure 4. 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/ ©2006 Fairchild Semiconductor Corporation 74LCX574 Rev. 1.6.1 #### NOTES: - A. CONFORMS TO JEDEC REGISTRATION MO-241, VARIATION AC - B. DIMENSIONS ARE IN MILLIMETERS. - C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994 MLP20BrevA #### Figure 5. 20-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 4.5mm Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. LAND PATTERN RECOMMENDATIONS #### DIMENSIONS ARE IN MILLIMETERS #### NOTES: - A. CONFORMS TO JEDEC REGISTRATION MO-150, VARIATION AE, DATE 1/94. - B. DIMENSIONS ARE IN MILLIMETERS. - C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. - D. DIMENSIONS AND TOLERANCES PER ASME Y14.5M 1994. ## MSA20REVB Figure 6. 20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. DIMENSIONS ARE IN MILLIMETERS #### NOTES: - A. CONFORMS TO JEDEC REGISTRATION MD-153, VARIATION AC, REF NOTE 6, DATE 7/93. - B. DIMENSIONS ARE IN MILLIMETERS. - C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS. - D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982. DETAIL A #### MTC20REVD1 ## Figure 7. 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products. #### TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. CTL™ GTO™ Current Transfer Logic™ IntelliMAX™ DEUXPEED® ISOPLANAR™ Dual Cool™ Making Small S Dual Cool™ Making Small Speakers Sound Louder EcoSPARK® and Better™ ECOSPARK® and Better™ EfficientMax™ MegaBuck™ ESBC™ MICROCOUPLER™ MicroFET™ MicroPak™ Fairchild® MicroPak2™ Fairchild Semiconductor® MillerDrive™ FACT Quiet Series™ MotionMax™ FACT® MotionMax™ FAST® OptoHiT™ FastvCore™ OPTOLOGIC® FETBench™ OPTOPLANAR® PowerTrench® PowerXS™ Programmable Active Droop™ QFET[®] QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SuperMOS® SyncFET™ TinyBoost® TinyCalc™ TinyCalc™ TinyCojc® TiNYOPTO™ TinyPower™ TinyPWM™ TinyPWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* µSerDes™ Sync-Lock™ SerDes" UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™ #### DISCLAIMER **FPS™** FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN, NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. - A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. #### ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. #### PRODUCT STATUS DEFINITIONS #### **Definition of Terms** | Definition of Terms | | | | | | | |---------------------------------|-----------------------|---|--|--|--|--| | Datasheet Identification | Product Status | Definition | | | | | | Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | | | | | Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | | | | | No Identification Needed | Full Production | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | | | | | Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. | | | | | Rev. 166 ^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor. ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative