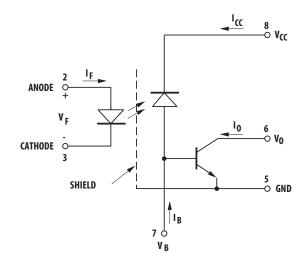

Functional Diagram



Truth Table (Positive Logic)

LED	V_0
ON	LOW
OFF	HIGH

A 0.1- μ F bypass capacitor must be connected between pins 5 and 8.

Schematic

Selection Guide

Minimum CMR			8-Pin DIF	(300 Mil)	Small Ou	Widebody (400 Mil)	
dV/dT (V/μs)	V _{CM} (V)	Current Transfer Ratio (%)	Single Channel Package	Dual Channel Package ^a	Single Channel Package	Dual Channel Package ^a	Single Channel Package
1000	10	7	6N135	HCPL-2530	HCPL-0500	HCPL-0530	HCNW135
		19	6N136	HCPL-2531	HCPL-0501	HCPL-0531	HCNE136
		15	HCPL-2502				

a. Technical data for these products are on separate Broadcom publications.

Ordering Information

6N135, 6N136, HCPL-2502, HCPL-0500, HCPL-0501 are UL Recognized with 3750 V_{rms} for 1 minute per UL1577.

HCNW135 and HCNW136 are UL Recognized with 5000 V_{rms} for 1 minute per UL1577. All these devices are approved under CSA Component Acceptance Notice #5, File CA 88324.

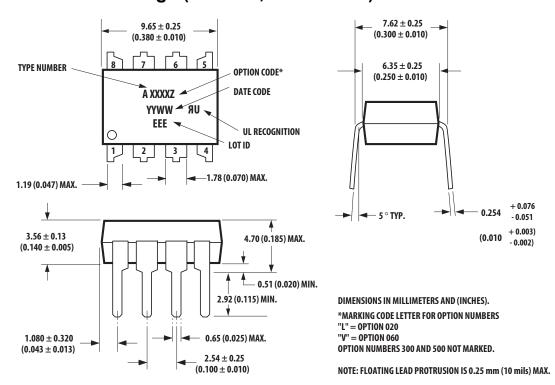
	Opt	tion					UL 3750	UL 5000		
Part Number	RoHS Compliant	Non RoHS Compliant	Package	Surface Mount	Gull Wing	Tape and Reel	V _{rms} / 1 Minute Rating	V _{rms} / 1 Minute Rating	EN 60747-5-5	Quantity
6N135	-000E	No option	300mil				Х			50 per tube
6N136	-300E	#300	DIP-8	Χ	Х		Χ			50 per tube
HCPL-2502	-500E	#500		Х	Х	Х	Х			1000 per reel
	-020E	#020						Х		50 per tube
	-320E	#320		Х	Х			Х		50 per tube
	-520E	#520		Х	Х	Х		Х		1000 per reel
	-060E	#060					Χ		Х	50 per tube
	-360E	#360		Х	Х		Χ		Х	50 per tube
	-560E	#560		Х	Х	Х	Х		Х	1000 per reel
HCPL-0500	-000E	No option	SO-8	Х			Χ			100 per tube
HCPL-0501	-500E	#500		Х		Х	Χ			1500 per reel
	-060E	#060		Х			Χ		Х	100 per tube
	-560E	#560		Х		Х	Χ		Х	1500 per reel
HCNW135	-000E	No option	400 mil					Х	Х	42 per tube
HCNW136	-300E	#300	Widebody	Х	Х			Х	Х	42 per tube
	-500E	#500	DIP-8	Χ	Χ	Х		Х	Х	750 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

HCPL-2502-560E to order product of 300 mil DIP Gull Wing Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant.

Example 2:

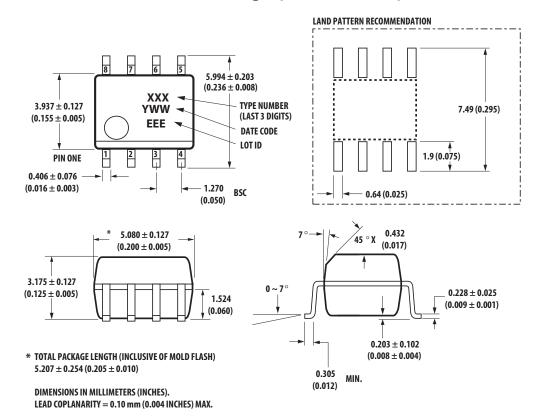

HCPL-2502 to order product of 300 mil DIP package in tube packaging and non RoHS compliant.

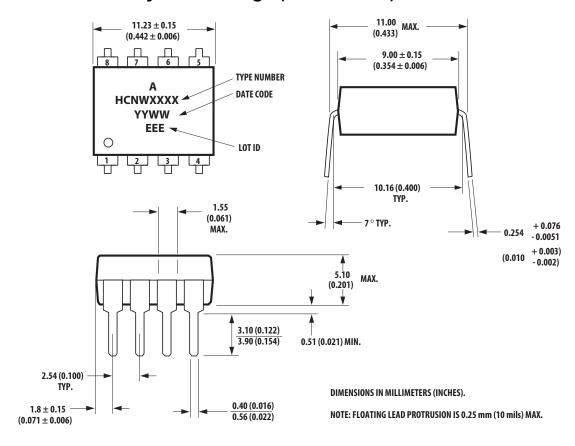
Optional data sheets are available. Contact your Broadcom[®] sales representative or authorized distributor for information.

NOTE: The notation '#XXX' is used for existing products, while (new) products launched since 15th July 2001 and RoHS compliant option will use '-XXXE'.

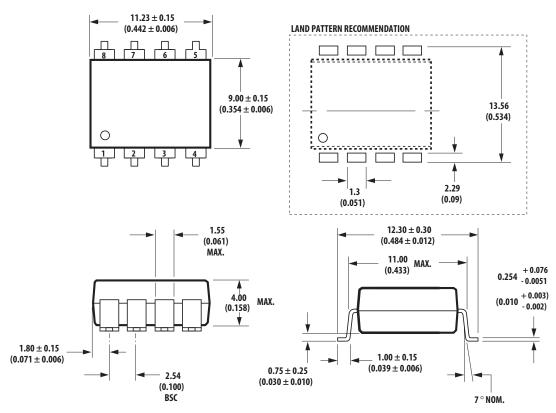
Package Outline Drawings

8-Pin DIP Package (6N135/6, HCPL-2502)


8-Pin DIP Package with Gull Wing Surface Mount Option 300 (6N135/6)


LEAD COPLANARITY = 0.10 mm (0.004 INCHES).

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.


Small Outline SO-8 Package (HCPL-0500/1)

8-Pin Widebody DIP Package (HCNW135/6)

8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW135/6)

DIMENSIONS IN MILLIMETERS (INCHES).

LEAD COPLANARITY = 0.10 mm (0.004 INCHES).

NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

Solder Reflow Profile

Recommended reflow conditions are as per JEDEC Standard, J-STD-020 (latest revision). Non-halide flux should be used.

Regulatory Information

The devices contained in this data sheet have been approved by the following organizations:

UL Approval under UL 1577, Component Recognition Program, File E55361.

CSA Approval under CSA Component Acceptance Notice #5, File CA 88324.

IEC/EN/DIN EN 60747-5-5 (HCNW and Option 060/360/560 only)

Insulation and Safety Related Specifications

Parameter	Symbol	8-Pin DIP (300 Mil) Value	SO-8 Value	Widebody (400 Mil) Value	Units	Conditions
Minimum External Air Gap (External Clearance)	L(101)	7.1	4.9	9.6	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (External Creepage)	L(102)	7.4	4.8	10.0	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	0.08	1.0	mm	Through insulation distance conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity.
Minimum Internal Tracking (Internal Creepage)		N/A	N/A	4.0	mm	Measured from input terminals to output terminals, along internal cavity.
Tracking Resistance (Comparative Tracking Index)	CTI	200	200	200	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		Illa	Illa	Illa		Material Group (DIN VDE 0110, 1/89, Table 1)

Option 300 – Surface mount classification is Class A in accordance with CECC 00802.

IEC/EN/DIN EN 60747-5-5 Insulation Characteristics^a (Option 060 Only)

Description	Symbol	8-Pin DIP	SO-8	Units
Installation Classification per DIN VDE 0110/39, Table 1				
for rated mains voltage ≤ 150 V _{rms}		I – IV	I – IV	
for rated mains voltage ≤ 300 V _{rms}		I – IV	I – IV	
for rated mains voltage ≤ 600 V _{rms}		I – IV	I – III	
Climatic Classification		0/70/21	0/70/21	
Pollution Degree (DIN VDE 0110/39)		2	2	
Maximum Working Insulation Voltage	V _{IORM}	630	567	V _{peak}
Input to Output Test Voltage, Method b^a V _{IORM} × 1.875 = V _{PR} , 100% Production Test with t_m = 1s, Partial Discharge < 5 pC	V _{PR}	1181	1063	V _{peak}
Input to Output Test Voltage, Method a^a V _{IORM} x 1.6 = V _{PR} , Type and Sample Test, t_m = 10s, Partial Discharge < 5 pC	V _{PR}	1008	907	V _{peak}
Highest Allowable Overvoltage ^a (Transient Overvoltage t _{ini} = 60s)	V _{IOTM}	8000	6000	V_{peak}
Safety-limiting values – Maximum Values Allowed in the Event of a Failure				
Case Temperature	T _S	175	150	°C
Input Current	I _{S, INPUT}	230	150	mA
Output Power	P _{S, OUTPUT}	600	600	mW
Insulation Resistance at T _S , V _{IO} = 500V	R _S	≥10 ⁹	≥10 ⁹	Ω

a. Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN 60747-5-5, for a detailed description.

NOTE: Isolation characteristics are guaranteed only within the safety maximum ratings, which must be ensured by protective circuits in the application.

IEC/EN/DIN EN 60747-5-5 Insulation Characteristics^a (HCNW135/6 Option 060 Only)

Description	Symbol	Characteristic	Units
Installation Classification per DIN VDE 0110/39, Table 1			
for rated mains voltage ≤ 150 V _{rms}		I – IV	
for rated mains voltage ≤ 300 V _{rms}		I – IV	
for rated mains voltage ≤ 600 V _{rms}		I – IV	
for rated mains voltage ≤ 1000 V _{rms}		I – III	
Climatic Classification		0/70/21	
Pollution Degree (DIN VDE 0110/39)		2	
Maximum Working Insulation Voltage	V _{IORM}	1414	V _{peak}
Input to Output Test Voltage, Method b ^a	V _{PR}	2651	V _{peak}
$V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ s, Partial Discharge < 5 pC			
Input to Output Test Voltage, Method a ^a	V_{PR}	2262	V_{peak}
V_{IORM} x 1.6 = V_{PR} , Type and Sample Test, t_m = 10s, Partial Discharge < 5 pC			
Highest Allowable Overvoltage ^a (Transient Overvoltage t _{ini} = 60s)	V_{IOTM}	8000	V_{peak}
Safety-limiting values – Maximum Values Allowed in the Event of a Failure			
Case Temperature	T _S	150	°C
Input Current	I _{S, INPUT}	400	mA
Output Power	Ps, output	700	mW
Insulation Resistance at T _S , V _{IO} = 500V	R _S	≥10 ⁹	Ω

a. Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section IEC/EN/DIN EN 60747-5-5, for a detailed description.

NOTE: Isolation characteristics are guaranteed only within the safety maximum ratings, which must be ensured by protective circuits in the application.

Absolute Maximum Rating

Parameter	Symbol	Device	Min.	Max.	Units	Note
Storage Temperature ^a	T _S		– 55	125	°C	
Operating Temperature ^a	T _A	8-Pin DIP SO-8	– 55	100	°C	
		Widebody	-55	85		
Average Forward Input Current ^a	I _{F(AVG)}			25	mA	b
Peak Forward Input Current ^a	I _{F(PEAK)}	8-Pin DIP SO-8		50	mA	С
(50% duty cycle, 1-ms pulse width)						
50% duty cycle, 1 ms pulse width		Widebody	_	40		
Peak Transient Input Current ^a (1-µs pulse width, 300 pps)	I _{F(TRANS)}	8-Pin DIP SO-8	_	1	Α	
		Widebody		0.1		
Reverse LED Input Voltage ^a (Pin 3-2)	V_{R}	8-Pin DIP SO-8		5	V	
,		Widebody		3		
Input Power Dissipation ^a	P _{IN}	8-Pin DIP SO-8	_	45	mW	d
		Widebody	_	40		
Average Output Current ^a (Pin 6)	I _{O(AVG)}		_	8	mA	
Peak Output Current ^a	I _{O(PEAK)}		_	16	mA	
Emitter-Base Reverse Voltage ^a (Pin 5-7)	V _{EBR}			5	V	
Supply Voltage (Pin 8-5)	V _{CC}		-0.5	30	V	
Output Voltage (Pin 6-5)	Vo		-0.5	20	V	
Supply Voltage ^a (Pin 8-5)	V _{CC}		-0.5	15	V	
Output Voltage ^a (Pin 6-5)	Vo		-0.5	15	V	
Base Current ^a (Pin 7)	I _B		_	5	mA	
Output Power Dissipation ^a	Po		_	100	mW	е
Lead Solder Temperature ^a (Through-Hole Parts Only)	T _{LS}	8-Pin DIP	_	260	°C	
1.6 mm below seating plane, 10s up to seating plane, 10s		Widebody		260	°C	
Reflow Temperature Profile	T _{RP}	SO-8 and Option 300	See P	ac <mark>kage C</mark>	Outline Dra	awings

- a. Data has been registered with JEDEC for the 6N135/6N136.
- b. Derate linearly above 70°C free-air temperature at a rate of 0.8 mA/°C (8-Pin DIP). Derate linearly above 85°C free-air temperature at a rate of 0.5 mA/°C (SO-8).
- c. Derate linearly above 70°C free-air temperature at a rate of 1.6 mA/°C (8-Pin DIP). Derate linearly above 85°C free-air temperature at a rate of 1.0 mA/°C (SO-8).
- d. Derate linearly above 70°C free-air temperature at a rate of 0.9 mW/°C (8-Pin DIP). Derate linearly above 85°C free-air temperature at a rate of 1.1 mW/°C (SO-8).
- e. Derate linearly above 70°C free-air temperature at a rate of 2.0 mW/°C (8-Pin DIP). Derate linearly above 85°C free-air temperature at a rate of 2.3 mW/°C (SO-8).

Electrical Specifications (DC)

Over recommended operating temperature ($T_A = 0$ °C to 70°C) and unless otherwise specified. See note.

Parameter	Symbol	Device	Min.	Typ. ^a	Max.	Units		Test Condition	ons	Figure	Note
Current Transfer	CTR ^b	6N135	7	18	50	%	T _A = 25°C	V _O = 0.4V	I _F = 16 mA,	1, 2, 4	c _. d
Ratio		HCPL-0500 HCNW135	5	19	_				V _{CC} = 4.5V		·
		HCPL-2502	15		22		T _A = 25°C	$V_0 = 0.4V$			
			15	25	_			V _O = 0.5V			
		6N136	19	24	50		T _A = 25°C	$V_{O} = 0.4V$			
		HCPL-0501 HCNW136	15	25	_			V _O = 0.5V			
Logic Low	V _{OL}	6N135	_	0.1	0.4	V	T _A = 25°C	I _O = 1.1 mA	I _F = 16 mA,		
Output Voltage		HCPL-0500 HCNW135	_	0.1	0.5			I _O = 0.8 mA	V _{CC} = 4.5V		
		6N136	_	0.1	0.4		$T_A = 25^{\circ}C$	$I_0 = 3.0 \text{ mA}$			
		HCPL-2502 HCPL-0501 HCNW136	_	0.1	0.5			I _O = 2.4 mA			
Logic High Output Current	I _{OH} ^b		_	0.003	0.5	μA	T _A = 25°C	$V_O = V_{CC} =$ 5.5V	I _F = 0 mA	7	
			_	0.01	1		T _A = 25°C	V _O = V _{CC} = 15V			
			_	_	50			V _O = V _{CC} = 15V			
Logic Low Supply Current	I _{CCL}		_	50	200	μA	I _F = 16 mA	, V _O = Open,	V _{CC} = 15V		
Logic High	I _{CCH} ^b		_	0.02	1	μΑ	T _A = 25°C	$I_F = 0 \text{ mA},$			
Supply Current	0011							V _O = Open			
				_	2			$V_{CC} = 15V$			
Input Forward	V _F ^b	8-Pin DIP	_	1.5	1.7	V	T _A = 25°C	I _F = 16 mA		3	
Voltage		SO-8	_	_	1.8					-	
		Widebody	1.45	1.68	1.85		T _A = 25°C	I _F = 16 mA			
			1.35	_	1.95					-	
Input Reverse	BV _R ^b	8-Pin DIP	5	_	_	V	I _R = 10 μA				
Breakdown		SO-8									
Voltage		Widebody	3	_	_		I _R = 100 μA				
Temperature	$\Delta V_F / \Delta T_A$	8-Pin DIP	_	-1.6		mV/°C	I _F =				
Coefficient of		SO-8					16 mA				
Forward Voltage		Widebody	_	-1.9							
Input	C _{IN}	8-Pin DIP	_	60	_	pF	f = 1 MHz,	V _F = 0V			
Capacitance		SO-8									
		Widebody	_	90	_						

Parameter	Symbol	Device	Min.	Typ. ^a	Max.	Units	Test Conditions	Figure	Note
Transistor DC	h _{FE}	8-Pin DIP	_	150			$V_{O} = 5V, I_{O} = 3 \text{ mA}$		
Current Gain		Widebody	_	180	_		V _O = 5V, I _O = 3 mA		
			_	160	_		V _O = 0.4V, I _B = 20 μA		

- a. All typicals at $T_A = 25$ °C.
- b. For JEDEC registered parts.
- $c. \quad \text{CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, I}_{O}, to the forward LED input current, I}_{F}, times 100.$
- d. The JEDEC registration for the 6N136 specifies a minimum CTR of 15%. Avago guarantees a minimum CTR of 19%.

NOTE: Use of a 0.1-µf bypass capacitor connected between pins 5 and 8 is recommended.

Switching Specifications (AC)

Over recommended temperature ($T_A = 0$ °C to 70°C), $V_{CC} = 5$ V, $I_F = 16$ mA unless otherwise specified.

Parameter	Symbol	Device	Min.	Typ. ^a	Max.	Units	Test	Conditions	Figure	Note					
Propagation Delay Time to Logic Low at Output	t _{PHL} b	6N135 HCPL-0500 HCNW135	_	0.2	1.5	μs	T _A = 25°C	R _L = 4.1 kΩ	5, 6, 11	c, d					
		6N136		0.2	0.8		T _A = 25°C	$R_L = 1.9 \text{ k}\Omega$							
		HCPL-2502 HCPL-0501 HCNW136	_	_	1.0										
Propagation Delay	t _{PLH} b	6N135		1.3	1.5	μs	T _A = 25°C	$R_L = 4.1 \text{ k}\Omega$	5, 6, 11	c, d					
Time to Logic High at Output		HCPL-0500 HCNW135	_	_	2.0										
							6N136		0.6	0.8	1	T _A = 25°C	$R_L = 1.9 \text{ k}\Omega$		
		HCPL-2502 HCPL-0501 HCNW136	_	_	1.0										
Common Mode	[CM _H]	6N135	1		_	kV/μs	$R_L = 4.1 \text{ k}\Omega$	I _F = 0 mA,	12	c, d, e					
Transient Immunity at Logic High Level				HCPL-0500 HCNW135		1				$T_A = 25^{\circ}C,$ $V_{CM} = 10 V_{p-p},$					
Output		6N136	1				$R_L = 1.9 \text{ k}\Omega$	C _L = 15 pF							
		HCPL-2502 HCPL-0501	_	1	_										
Common Mode	CM _L	6N135	1		_	kV/μs	$R_L = 4.1 \text{ k}\Omega$		12	c, d, e					
Transient Immunity at Logic Low Level		HCPL-0500 HCNW135	_	1	_			$T_A = 25$ °C, $C_L = 15 pF$							
Output		6N136	1	_	_	1	$R_L = 1.9 \text{ k}\Omega$								
		HCPL-2502 HCPL-0501		1											
Bandwidth	BW	6N135/6 HCPL-2502 HCPL-0500/1	_	9	_	MHz	See Test Circuit		8, 10	f					
		HCNW135/6		11	_										

- a. All typicals at $T_A = 25$ °C.
- b. For JEDEC registered parts.
- c. The 1.9 k Ω load represents 1 TTL unit load of 1.6 mA and the 5.6 k Ω pull-up resistor.
- d. The 4.1 k Ω load represents 1 LSTTL unit load of 0.36 mA and 6.1 k Ω pull-up resistor.
- e. Common mode transient immunity in a Logic High level is the maximum tolerable (positive) dV_{CM}/dt on the leading edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a Logic High state (that is, $V_O > 2.0V$). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dV_{CM}/dt on the trailing edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a Logic Low state (that is, $V_O < 0.8 V$).
- f. The frequency at which the ac output voltage is 3 dB below its mid-frequency value.

Package Characteristics

Over recommended temperature ($T_A = 0$ °C to 70°C) unless otherwise specified.

Parameter	Sym.	Device	Min.	Typ. ^a	Max.	Units	Test Conditions	Figure	Note
Input-Output Momentary Withstand Voltage ^b	V _{ISO}	8-Pin DIP SO-8	3750	_	_	V _{rms}	RH < 50%, t = 1 min., T _A = 25°C		c, d
		Widebody	5000	_	_	-			c, e
		8-Pin DIP (Option 020)	5000	_	_				c, e, f
	I _{I-O}	8-Pin DIP	_	_	1	μA	45% RH, t = 5s, V _{I-O} = 3 kVdc, T _A = 25°C		c, g
Input-Output Resistance	R _{I-O}	8-Pin DIP SO-8	_	10 ¹²	_	Ω	V _{I-O} = 500 Vdc		С
		Widebody	10 ¹²	10 ¹³	_		T _A = 25°C		
			10 ¹¹	_	_	-	T _A = 100°C		
Input-Output Capacitance	C _{I-O}	8-Pin DIP SO-8	_	0.6	_	pF	f = 1 MHz		С
		Widebody	_	0.5	0.6				

- a. All typicals at $T_A = 25$ °C.
- b. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-5 Insulation Related Characteristics Table (if applicable), your equipment level safety specification or Avago Application Note 1074, *Optocoupler Input-Output Endurance Voltage*, publication number 5963-2203E.
- c. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
- d. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 4500 V_{rms} for 1 second (leakage detection current limit, I_{I-O} ≤ 5 μA). This test is performed before the 100% Production test shown in the IEC/EN/DIN EN 60747-5-5 Insulation Related Characteristics Table if applicable.
- e. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 6000 V_{rms} for 1 second (leakage detection current limit, I_{I-O} ≤ 5 µA). This test is performed before the 100% Production test shown in the IEC/EN/DIN EN 60747-5-5 Insulation Related Characteristics Table if applicable.
- f. Refer to the Option 020 data sheet for more information.
- g. This rating is equally validated by an equivalent ac proof test.

Figure 1: DC and Pulsed Transfer Characteristics

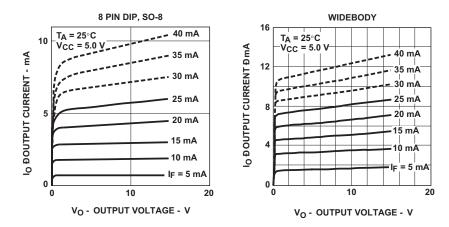


Figure 2: Current Transfer Ratio vs. Input Current

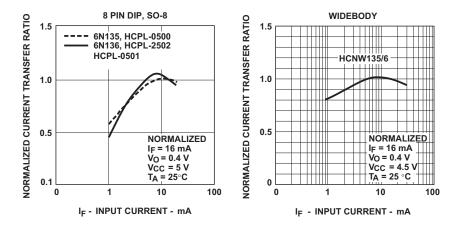


Figure 3: Input Current vs. Forward Voltage

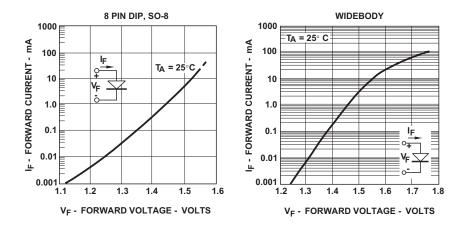


Figure 4: Current Transfer Ratio vs. Temperature

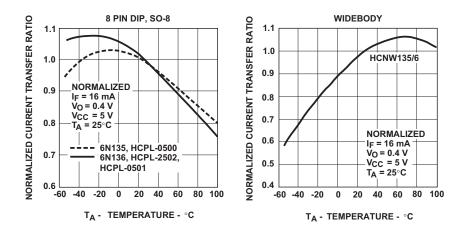


Figure 5: Propagation Delay vs. Temperature

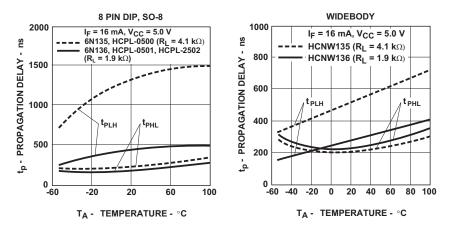


Figure 6: Propagation Delay Time vs. Load Resistance

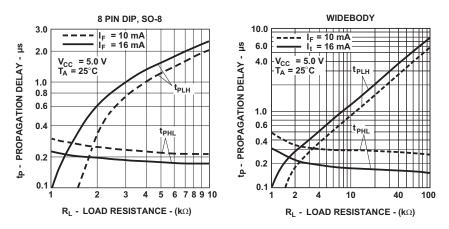


Figure 7: Logic High Output Current vs. Temperature

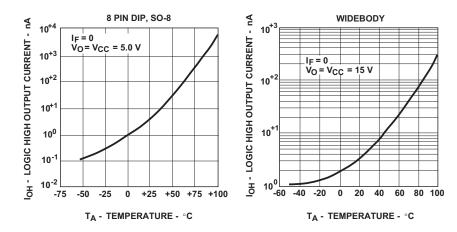


Figure 8: Small-Signal Current Transfer Ratio vs. Quiescent Input Current

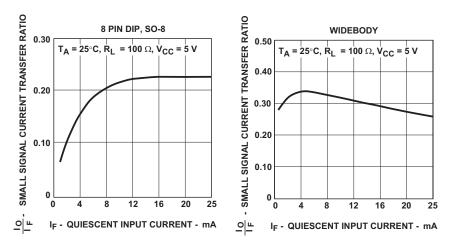
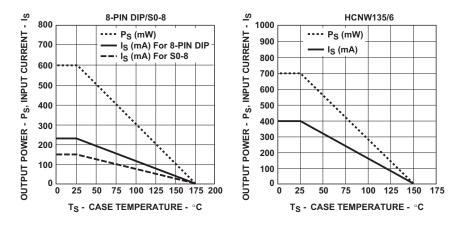



Figure 9: Thermal Derating Curve, Dependence of Safety Limiting Value with Case Temperature per IEC/EN/DIN EN 60747-5-5

Figure 10: Frequency Response

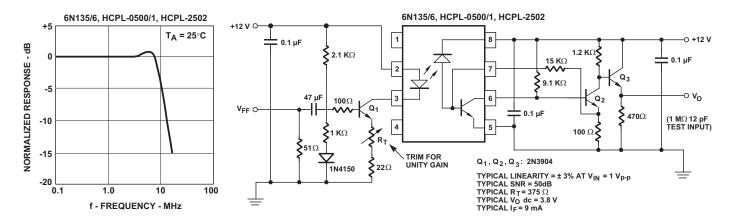


Figure 11: Switching Test Current

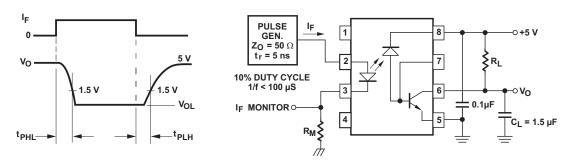
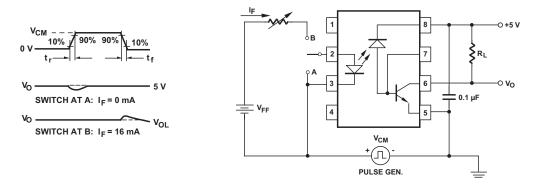



Figure 12: Test Circuit for Transient Immunity and Typical Waveforms

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries, and/or the EU.

Copyright © 2014–2019 Broadcom. All Rights Reserved.

The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability, function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.

