

Table of Contents

Features	1
Applications	1
Table of Contents	2
Pin Diagram	5
Pin Descriptions	6
Functional Description	9
Clock Inputs	9
Clock Outputs	12
Crystal Oscillator Input	13
Termination of unused inputs and outputs	13
Power Consumption	14
Power Supply Filtering	14
Power Supplies and Power-up Sequence	15
Host Interface	15
Typical device performance	20
Register Map	24
AC and DC Electrical Characteristics	30
Absolute Maximum Ratings	30
Recommended Operating Conditions	30
Change History	49
Package Outline	50

List of Figures

Figure 1.	Functional Block Diagram	
Figure 2.	Pin Diagram	5
Figure 3.	Input driven by a single ended output	9
Figure 4.	Input driven by DC coupled LVPECL output	9
Figure 5.	Input driven by DC coupled LVPECL output (alternative termination)	
Figure 6.	Input driven by AC coupled LVPECL output	
Figure 7.	Input driven by HCSL output	
Figure 8.	Input driven by LVDS output	11
Figure 9.	Input driven by AC coupled LVDS	11
Figure 10.	Input driven by an SSTL output	11
Figure 11.	Termination for LVCMOS outputs	12
Figure 12.	Driving a load via transformer	12
Figure 13.	Crystal Oscillator Circuit	
Figure 14.	Crystal Oscillator Circuit in Hardware Controlled Mode	13
Figure 15.	Power Supply Filtering	
Figure 16.	Output Disable	
Figure 17.	Output Enable	
Figure 18.	SPI slave interface	
Figure 19.	Serial Peripheral Interface Functional Waveform – LSB First Mode	
Figure 20.	Serial Peripheral Interface Functional Waveform – MSB First Mode	
Figure 21.	Example of the Burst Mode Operation	
Figure 22.	156.25MHz LVPECL	20
Figure 23.	1.5GHz LVPECL	20
Figure 24.	156.25MHz LVDS	
Figure 25.	1.5GHz LVDS	20
Figure 26.	100MHz HCSL	
Figure 27.	250MHz HCSL	
Figure 28.	I/O delay vs temperature	
Figure 29.	PSNR vs noise frequency	
Figure 30.	100MHz LVPECL Phase Noise	
Figure 31.	100MHz LVDS Phase Noise	
Figure 32.	156.25MHz LVDS Phase Noise in Xtal mode	
Figure 33.	100MHz HCSL Phase Noise	
Figure 34.	156.25MHz LVPECL Phase Noise	
Figure 35.	625MHz LVPECL Phase Noise	
Figure 36.	156.25MHz LVDS Phase Noise	
Figure 37.	625MHz LVDS Phase Noise	
Figure 38.	Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate	
Figure 39.	Output clock noise floor vs input clock slew-rate	
Figure 40.	Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate	
Figure 41.	Output clock noise floor vs input clock slew-rate	
Figure 42.	Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate	
Figure 43.	Output clock noise floor vs input clock slew-rate	
Figure 44.	Differential Input Voltage Levels	
Figure 45.	Differential Output Voltage Levels	
Figure 46.	SPI (Serial Peripheral Interface) Timing - LSB First Mode	
Figure 47.	SPI (Serial Peripheral Interface) Timing - MSB First Mode	47

List of Tables

Table 1 Pin Description	6
Table 1 Pin DescriptionTable 2 Input clock selection	15
Table 3 Output Type Selection	15
Table 4 Register Map	24
Table 5 Absolute Maximum Ratings*	30
Table 6 Recommended Operating Conditions*	30
Table 7 Current consumption	
Table 8 Input Characteristics*	31
Table 9 Crystal Oscillator Characteristics*	32
Table 10 Power Supply Rejection Ratio for VDD = VDDO = 3.3V*	32
Table 11 Power Supply Rejection Ratio for VDD = VDDO = 2.5V*	<i>33</i>
Table 12 LVCMOS Output Characteristics for VDDO = 3.3V*	33
Table 13 LVCMOS Output Characteristics for VDDO = 2.5V*	34
Table 14 LVPECL Output Characteristics for VDDO = 3.3V*	35
Table 15 LVPECL Output Characteristics for VDDO = 2.5V*	36
Table 16 LVDS Outputs for VDDO = 3.3V*	37
Table 17 LVDS Outputs for VDDO = 2.5V*	38
Table 18 HCSL Outputs for VDDO = 3.3V*	
Table 19 HCSL Outputs for VDDO = 2.5V*	
Table 20 LVCMOS Output Phase Noise with 25 MHz XTAL*	41
Table 21 LVPECL Output Phase Noise with 25 MHz XTAL*	41
Table 22 LVDS Output Phase Noise with 25 MHz XTAL	42
Table 23 HCSL Output Phase Noise with 25 MHz XTAL	42
Table 24 LVCMOS Output Phase Noise with 125 MHz XTAL*	43
Table 32 AC Electrical Characteristics* - SPI (Serial Peripheral Interface) Timing	47
Table 33 6x6mm QFN Package Thermal Properties	48

Pin Diagram

The device is packaged in a 6 x 6 mm 40-pin QFN.

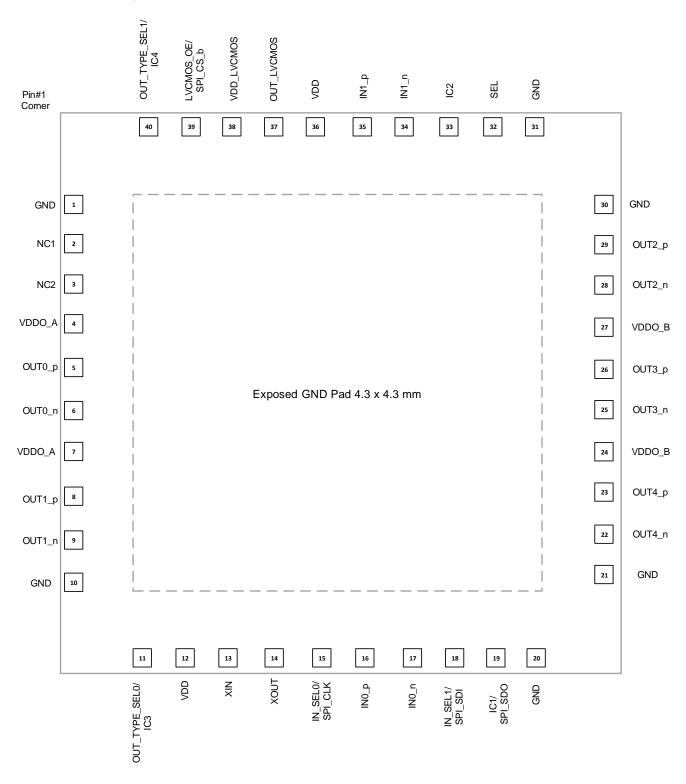


Figure 2. Pin Diagram

Pin Descriptions

All device inputs and outputs are LVPECL unless described otherwise. The I/O column uses the following symbols: I – input, I $_{PU}$ – input with 300k Ω internal pull-up resistor, I $_{PD}$ – input with 300k Ω internal pull-down resistor, I $_{APU}$ – input with 30k Ω internal pull-down resistor, I $_{APU/APD}$ – input with 60k Ω internal pull-up and pull-down resistors (30 k Ω equivalent), O – output, I/O – Input/Output pin, NC – No connect, P – power supply pin.

Table 1 Pin Description

#	Name	I/O	Description
Input Refe	erence		
16 17 35 34	IN0_p IN0_n IN1_p IN1_n	I _{APD} I _{APU/APD} I _{APD} I _{APD} I _{APU/APD}	Input Differential or Single Ended References 0 and 1 Input frequency range 0Hz to 1.6GHz. Non inverting inputs (_p) are pulled down with internal $30k\Omega$ pull-down resistors. Inverting inputs (_n) are biased at VDD/2 with $60k\Omega$ pull-up and pull-down resistors to keep inverting input voltages at VDD/2 when inverting inputs are left floating (device fed with a single ended reference).
Output Cl	ocks		
5 6 8 9 29 28 26 25 23 22	OUT0_p OUT0_n OUT1_p OUT1_n OUT2_p OUT2_n OUT3_p OUT3_n OUT4_p OUT4_n	0	Ultra Low Additive Jitter Differential LVPECL/HCSL/LVDS Outputs 0 to 4 Output frequency range 0 to 1.6GHz In SPI bus controlled mode (SEL pin pulled high on the power up) type (LVPECL/HCSL/LVDS/High-Z) of each output is programmable via SPI bus In Hardware control mode (SEL pin pulled low on the power up) type (LVPECL/HCSL/LVDS/High-Z) of each output bank is controlled via OUTA/B_TYPE_SEL0/1 pins
37	OUT_LVCMOS	0	Ultra Low Additive Jitter LVCMOS Output Output frequency range 0 to 250MHz
Control		1	
32	SEL	I _{PD}	Select control. When this pin is low, the device is controlled via hardware pins, IN_SEL0/1 and OE. When this pin is high, the device is controlled via SPI port. Any change of SEL pin value requires power cycle. Hence, SEL pin cannot be changed on the fly.

			Input Select 0 or Clock for Serial Interface. When SEL pin is low this pin is Input Select 0 hardware control input pin and it is pulled-down with 300 k Ω resistor. When SEL pin is high this pin provides clock for serial micro-port interface and it is pulled-up with 300 k Ω resistor.			
		IN_SEL1	IN_SEL0		OUTN	
		0	0	Inp	ut 0 (IN0)	
		0	1	Inp	ut 1 (IN1)	
		1	0	Crystal Osc	illator or overdrive	
		1	1	Crys	tal Bypass	
N_SEL1/SPI_SDI	I _{PD} or I _{PU}	Select 1 ha pin is high resistor. Th	nput Select 1 or Serial Interface Input. When SEL pin is low this pin is Input Select 1 hardware control pin and it is pulled-down with 300 k Ω resistor. When SEL pin is high this pin is serial interface input stream and it is pulled-up with 300 k Ω resistor. The serial data stream holds the access command, the address and the			
IC1/SPI_SDO	I/O	When SEL When SEL	Internal Connection 1 or Serial Interface Output. When SEL pin is low this pin in an internal connection. Leave open. When SEL pin is high this pin is Serial interface output stream. As an output the serial stream holds the read data bits.			
IC2	I _{PD}	Internal Co	onnection 2	2. This pin should be left ope	en.	
LVCMOS_OE/ SPI_CS_b	I _{PD} or I _{PU}	When SEL it is pulled- When SEL	pin is low the down with 3 pin is high	his pin is LVCMOS Output E $00~\mathrm{k}\Omega$ resistor. this pin is serial interface ch	Enable hardware control input and	
UT_TYPE_SEL0/ IC3 UT_TYPE_SEL1/	I _{PD}	-		nese two pins Selects Type	for all outputs	
IC4		OUT TYP	PE_SEL1	OUT_TYPE SEL0	Output 0 to 4	
				0	LVPECL	
				1	LVDS	
		1		0	HCSL	
				1	High-Z (Disabled)	
	IC1/SPI_SDO IC2 LVCMOS_OE/ SPI_CS_b JT_TYPE_SEL0/ IC3	IC1/SPI_SDO I/O IC2 I_PD LVCMOS_OE/ SPI_CS_b Or I_PU JT_TYPE_SEL0/ IC3 JT_TYPE_SEL1/	I_SEL1/SPI_SDI I_PD Or I_PU Or Select 1 ha pin is high resistor. The write data I IC1/SPI_SDO I/O Internal Co When SEL When SEL Serial streat IC2 I_PD Or When SEL When SEL Serial streat IC2 I_PD Or Unternal Co When SEL Serial streat I_PD Output Sig When SEL OUT_TYPE_SEL1/ IC4 OUT_TYPE OUT_TY	I_SEL1/SPI_SDI I_PD Or Select 1 hardware con pin is high this pin is so resistor. The serial dat write data bits. IC1/SPI_SDO I/O Internal Connection 1 When SEL pin is low the When SEL pin is high serial stream holds the serial stream holds the wite pin is pin is serial stream holds the serial stream holds the with the serial stream holds the serial stream holds the with the serial stream holds the with the serial stream holds the serial stream holds the with the serial stream holds the with the serial stream holds the with the serial stream holds the serial stream holds the with the serial stream holds the serial stream ho	Input Select 1 or Serial Interface Input. When S Select 1 hardware control pin and it is pulled-down pin is high this pin is serial interface input stream a resistor. The serial data stream holds the access of write data bits. IC1/SPI_SDO	

Crystal Os	scillator		
13	XIN	I	Crystal Oscillator Input or crystal bypass mode or crystal overdrive mode
14	XOUT	0	Crystal Oscillator Output
No Conne	ct		
2 3	NC1 NC2	NC	No Connect (not connected to the die) Leave unconnected or connect to GND for mechanical support
Power and	d Ground		
12 36	VDD	Р	Positive Supply Voltage. Connect to 3.3V or 2.5V supply.
4 7	VDDO_A	Р	Positive Supply Voltage for Differential Outputs Bank A Connect 3.3V or 2.5V power supply. VDDO_A does not have to be connected to the same voltage level as VDD or VDDO_B. These pins power up differential outputs OUT0_p/n and OUT1_p/n.
24 27	VDDO_B	Р	Positive Supply Voltage for Differential Outputs Bank B Connect 3.3V or 2.5V power supply. VDDO_B does not have to be connected to the same voltage level as VDD or VDDO_A. These pins power up differential outputs OUT2_p/n, OUT3_p/n and OUT4_p/n.
38	VDD_LVCMOS	Р	Positive Supply Voltage for LVCMOS Output Connect 3.3V, 2.5V, 1.8V or 1.5V power supply
1 10 20 21 30 31	GND	Р	Ground Connect to the ground
E-Pad	GND	Р	Ground. Connect to the ground

Functional Description

The ZL40235 is a programmable or hardware pin controlled low additive jitter, low power 3 x 5 LVPECL/HCSL/LVDS fanout buffer.

Two inputs can accept signal in differential (LVPECL, SSTL, LVDS, HSTL, CML) or single ended (LVPECL or LVCMOS) format and the third input can accept a single ended signal or it can be used to build a crystal oscillator by connecting an external crystal resonator between its XIN and XOUT pins. All the other components for building crystal oscillator are built in device such as load capacitance, series and shunt resistors.

The ZL40235 has five LVPECL/HCSL/LVDS outputs which can be powered from 3.3V or 2.5V supply. Each output can be independently enabled/disabled via SPI bus. The type of each output driver can be programmed to be LVPECL, HCSL or LVDS. Hence, the device can be configured to support application where different signal formats are needed.

The device operates from 2.5V+/-5% or 3.3V+/-5% supply. Its operation is guaranteed over the industrial temperature range -40°C to +85°C.

Clock Inputs

The following blocks diagram shows how to terminate different signals fed to the ZL40235 inputs.

Figure 3 shows how to terminate a single ended output such as LVCMOS. Ideally, resistors R1 and R2 should be 100Ω each and R0 + Rs should be 50Ω so that the transmission line is terminated at both ends with characteristic impedance. If the driving strength of the output driver is not sufficient to drive low impedance, the value of series resistor Rs should be increased. This will reduce the voltage swing at the input but this should be fine as long as the input voltage swing requirement is not violated (Table 8). The source resistors of Rs = 270Ω could be used for standard LVCMOS driver. This will provide 516mV of voltage swing for 3.3V LVCMOS driver with load current of $(3.3\text{V}/2) * (1/(270\Omega + 50\Omega)) = 5.16\text{mA}$.

For optimum performance both differential input pins (_p and _n) need to be DC biased to the same voltage. Hence, the ratio R1/R2 should be equal to the ratio R3/R4.

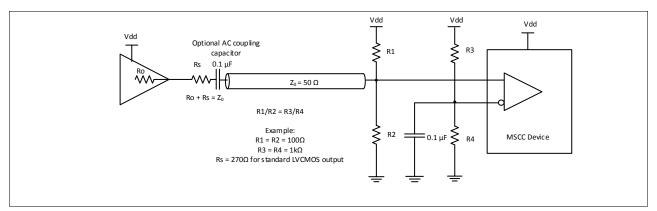


Figure 3. Input driven by a single ended output

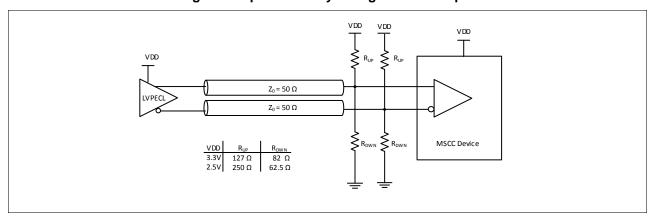


Figure 4. Input driven by DC coupled LVPECL output

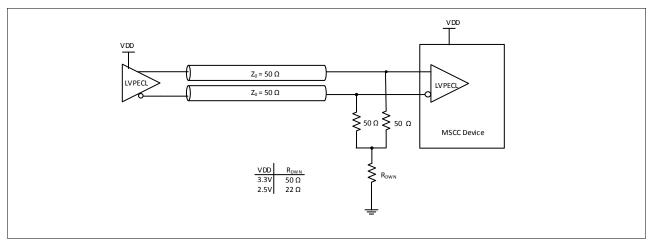


Figure 5. Input driven by DC coupled LVPECL output (alternative termination)

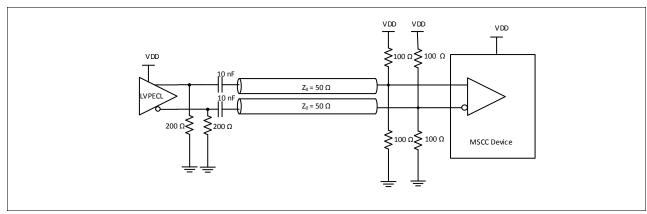


Figure 6. Input driven by AC coupled LVPECL output

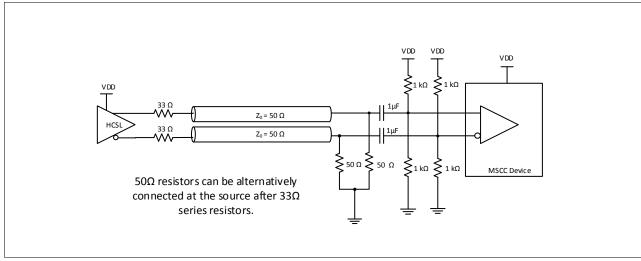


Figure 7. Input driven by HCSL output

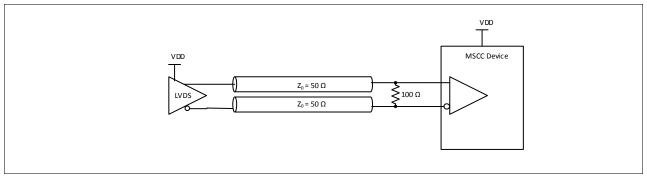


Figure 8. Input driven by LVDS output

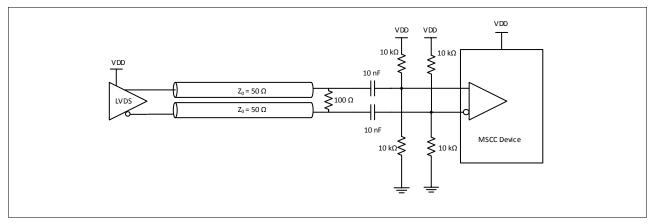


Figure 9. Input driven by AC coupled LVDS

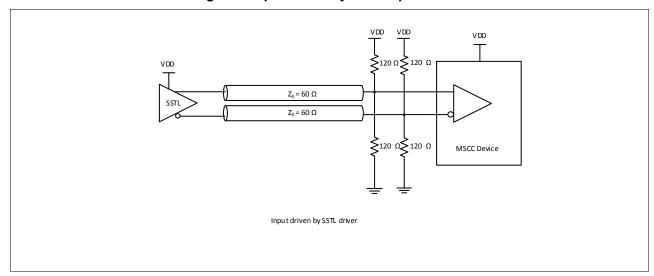


Figure 10. Input driven by an SSTL output

Clock Outputs

LVCMOS output OUT10 require only series termination resistor whose value is depending on LVCMOS output voltage as shown in Figure 11.

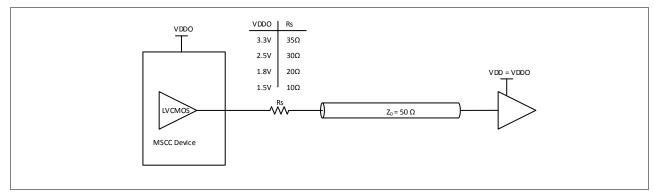


Figure 11. Termination for LVCMOS outputs

Differential outputs LVPECL and LVDS should have same termination as corresponding outputs described in previous section. HCSL outputs should be terminated with 33Ω series resistors at the source and 50Ω shunt resistors at the source or at the end on the transmission line. AC coupling and re-biasing is not required at the outputs when driving native HCSL receivers.

The device is designed to drive differential input of semiconductor devices. In applications that use a transformer to convert from the differential to the single ended output (for example driving an oscilloscope 50Ω input), a resistor larger than 10Ω should be added at the center tap of the primary winding to achieve optimum jitter performance as shown in Figure 12. This is to provide a nominal common mode impedance of 10Ω or higher which is typical for differential terminations.

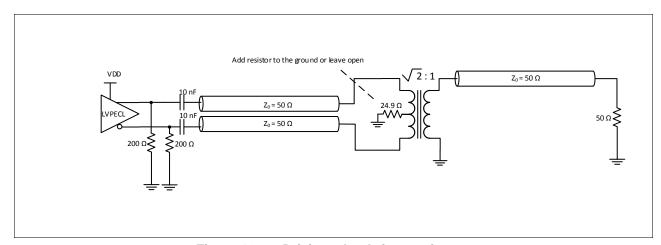


Figure 12. Driving a load via transformer

Crystal Oscillator Input

The crystal oscillator circuit can work with crystal resonators from 8MHz to 160MHz. As can be seen in the following figure only crystal resonator is required and all the other components are built-in the device. To be able support crystal resonators with different characteristics all internal components are programmable.

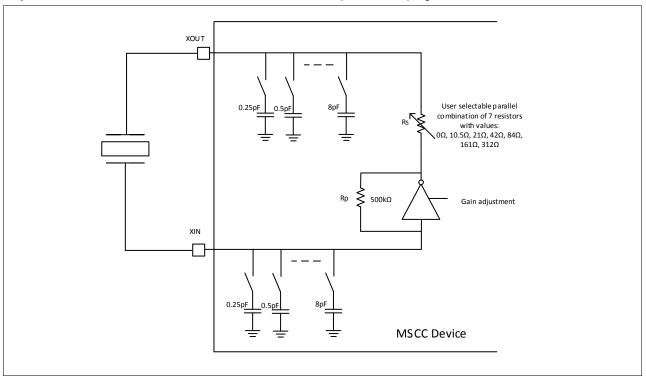


Figure 13. Crystal Oscillator Circuit

The load capacitors can be programmed from 0 to 21.75 pF (4pF default) with resolution of 0.25pF which not only meets load requirement for most crystal resonator but also allows for fine tuning of the crystal resonator frequency. The amplifier gain can be adjusted in five steps and series resistor can be adjusted as parallel combination of seven different resistors: 0Ω , 10.5Ω , 21Ω , 42Ω , 84Ω , 161Ω and 312Ω (84Ω default). Although the first resistor is 0Ω the series resistance Rs will be slightly higher than 0Ω due to parasitic resistance of the switch which connects resistor. Hence the minimum series resistance is achieved when all seven resistors are connected in parallel. The shunt resistor is fixed and its value is $500k\Omega$.

In Hardware Controlled mode the capacitive load is set at 4pF, internal series resistance to 84Ω and they cannot be changed. For Crystal requiring higher load or series resistance additional capacitance and/or series resistance can be added externally as shown in the Figure 14.

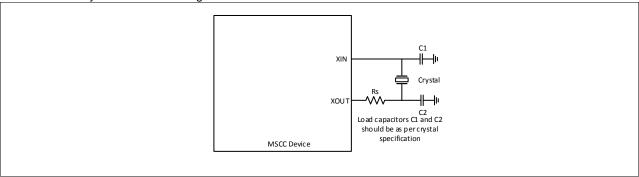


Figure 14. Crystal Oscillator Circuit in Hardware Controlled Mode

Termination of unused inputs and outputs

Unused inputs can be left unconnected or alternatively IN_0/1 can be pulled-down by $1k\Omega$ resistor. Unused outputs should be left unconnected.

Power Consumption

The device total power consumption can be calculated as:

$$P_T = P_S + P_{XTAL} + P_C + P_{O_DIF} + P_{O_LVCMOS}$$

Where:

$$P_{\rm S} = V_{\rm DD} \times I_{\rm S}$$

The core power when XTAL is not used. The current is specified in Table 7. .If XTAL is running this power should be set to zero.

$$P_{XTAL} = V_{DD} \times I_{DD} \times I_{TAL}$$

The core power when XTAL is used. The current is provided in Table 7. If XTAL is not used this power should be set to zero.

$$P_C = V_{DDO} \times I_{DD CM}$$

Common output power shared among all ten outputs. The current IDD_CM is specified in Table 7.

$$\begin{split} P_{O_DIF} = & V_{DDO} \times (I_{DD_LVDS} \times N_1 \\ & + I_{DD_LVPECL} \times N_2 + I_{DD_HCSL} \times N_3) \end{split}$$

Output power where output currents are specified in Table 7.

 $P_{O_LVCMOS} = V_{DD_LVCMOS} \times (I_{DD} \times f / 100MHz + V_{DD_LVCMOS} \times C_{LOAD} \times f)$

 N_1 , N_2 and N_3 are number of enabled LVPECL, LVDS and HSCL outputs respectively and $N_1+N_2+N_3$ is less or equal to 5.

Dynamic LVCMOS output power. I_{DD} is specified in Table 7. If LVCMOS output is disabled this term is equal to zero.

Power dissipated inside the device can be calculated by subtracting power dissipated in termination/biasing resistors from the power consumption.

$$P_{\scriptscriptstyle D} = P_{\scriptscriptstyle T} - N_{\scriptscriptstyle 1} \times P_{\scriptscriptstyle LVPECL} - N_{\scriptscriptstyle 2} \times P_{\scriptscriptstyle LVDS} - N_{\scriptscriptstyle 3} \times P_{\scriptscriptstyle HCSL}$$

Where N_1 , N_2 and N_3 are number of enabled LVPECL, LVDS and HSCL outputs respectively. Since there are five differential outputs $N_1 + N_2 + N_3$ is less or equal to 5.

$$P_{LVPECL} = (V_{OH} - V_B)^2 / 50\Omega + (V_{OL} - V_B)^2 / 50\Omega + (V_{OH} - V_B) \times V_B / 50\Omega + (V_{OL} - V_B) \times V_B / 50\Omega$$

 V_{OH} and V_{OL} are the output high and low voltages respectively for LVPECL output

V_B is LVPECL bias voltage equal to V_{DD} - 2V

$$P_{LVDS} = V_{SW}^2 / 100\Omega$$

V_{SW} is voltage swing of LVDS output.

$$P_{HCSL} = (V_{SW} / 50\Omega)^2 \times (33\Omega + 50\Omega)$$

 V_{SW} is voltage swing of HCSL output. 50Ω is termination resistance and 33Ω is series resistance of the HCSL output.

Power Supply Filtering

Each power pin (VDD and VDDO) should be decoupled with 0.1µF capacitor with minimum equivalent series resistance (ESR) and minimum series inductance (ESL). For example 0402 X5R Ceramic Capacitors with 6.3V minimum rating could be used. These capacitors should be placed as close as possible to the power pins. To reduce

the power noise from adjacent digital components on the board each power supply could be further insulated with low resistance ferrite bead with two capacitors. The ferrite bead will also insulate adjacent component from the noise generated from the device. Following figure shows recommended decoupling for each power pin.

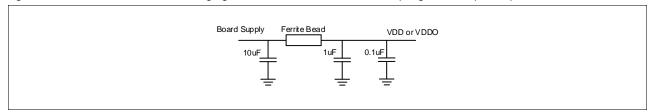


Figure 15. Power Supply Filtering

Power Supplies and Power-up Sequence

The device has four different power supplies: VDD, VDDO_A, VDDO_B and VDD_LVCMOS which are mutually independent. Voltages supported by each of these power supplies are specified in Table 1.

The device is not sensitive to the power-up sequence. For example commonly used sequence where higher voltage comes up before or at the same time as the lower voltages can be used (or any other sequence)

Host Interface

ZL30235 can be controlled via hardware pins (SEL pin tied low) or via SPI port (SEL pin tied high). The mode shall be selected during power up and it cannot be changed on the fly.

Hardware Control Mode

In this mode, ZL40235 is controlled via Input Select (IN_SEL0/1) pins which select which one of three inputs is fed to the output and show in Table 2 and OUT_TYPE_SEL0/1 pins which select signal level (LVPECL, LVDS, HCSL or Hi-Z) as shown in Table 3.

All input control pins have low input threshold voltage so they can be driven from the device with low output voltage (FPGA/CPLD). Supported voltages are between 1.2V and VDD (2.5V or 3.3V).

IN_SEL1	IN_SEL0	Selected Input
0	0	IN0_p, IN0_n
0	1	IN1_p, IN1_n
1	Х	XIN

Table 2 Input clock selection

Table 3 Output Type Selection

· · · · · · · · · · · · · · · · · · ·					
OUT_TYPE_SEL1	OUT_TYPE_SEL0	Output			
0	0	LVPECL			
1	1	LVDS			
1	0	HCSL			
1	1	High-Z (Output Disabled)			

Output is disabled synchronously on the falling edge of the input (t2) as shown in Figure 16.

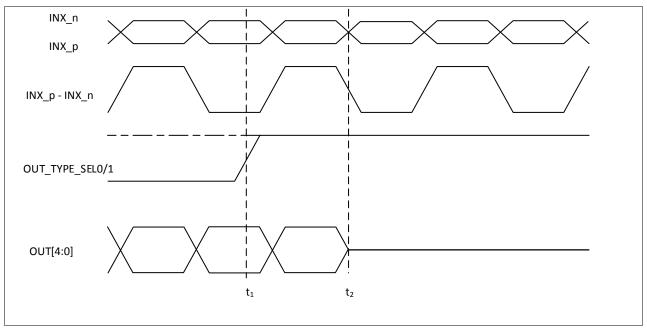


Figure 16. Output Disable

Outputs can be enabled by toggling one or both OUT_TYPE_SEL0/1 pins low depending on which type of interface needs to be enabled. As soon as one or both OUT_TYPE_SEL0/1 pins go low (t_1) the outputs will go from high-Z to low (OUTX_p = low, OUTx_n = high) and will start to track the input after the first falling edge (t_2) of the input signal as shown in Figure 17.

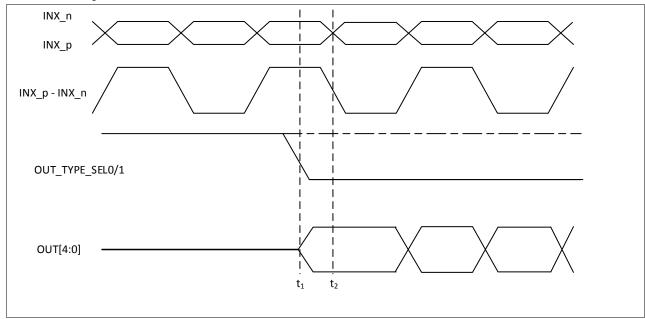


Figure 17. Output Enable

SPI Control Mode

ZL40235 is controlled via four pin SPI slave interface as shown in the following figure.

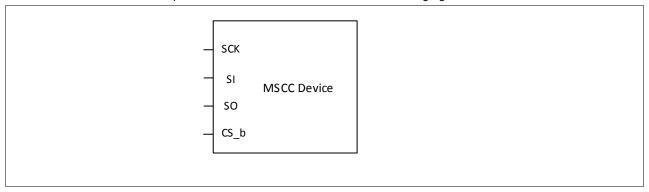


Figure 18. SPI slave interface

All SPI input pins have low threshold voltage so they can be driven from low output voltage SPI master device. Supported voltages are between 1.2V and VDD (2.5V or 3.3V). This allows device to be controlled from an FPGA with low voltage I/O supply.

The serial peripheral interface supports half-duplex processor mode which means that during a write cycle to the device, output data from the **SO** pin must be ignored. Similarly, the input data on the **SI** pin is ignored by the device during a read cycle.

The SPI interface supports two modes of access: Most Significant bit (MSb) first transmission or Least Significant bit (LSb) first transmission. The mode is automatically selected based on the state of **SCK** pin when the **CS_b** pin is active. If the **SCK** pin is low during **CS_b** activation, then MSb first timing is selected. If the **SCK** pin is high during **CS_b** activation, then LSb first timing is assumed.

The SPI port expects 1-bit to differentiate between read and write operation followed by 7-bit addressing and 8-bit data transmission. During SPI access, the **CS_b** pin must be held low until the operation is complete. Burst read/write mode is also supported by leaving the chip select signal **CS_b** is low after a read or a write. The address will be automatically incremented after each data byte is read or written.

Functional waveforms for the LSb and MSb first mode, and burst mode are shown in Figure 19 and Figure 20 respectively. Figure 21 shows an example of burst mode operation which allows user to read or write consecutive location in the register map.

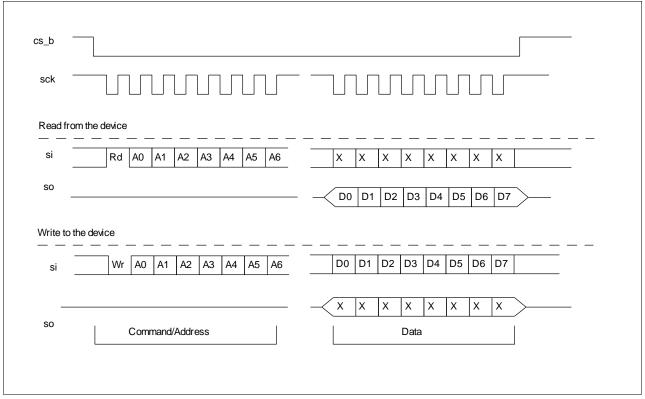


Figure 19. Serial Peripheral Interface Functional Waveform - LSB First Mode

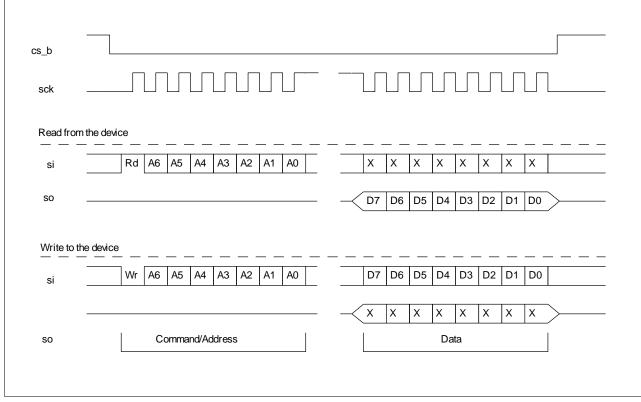


Figure 20. Serial Peripheral Interface Functional Waveform – MSB First Mode

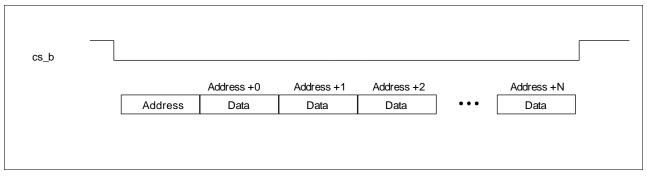


Figure 21. Example of the Burst Mode Operation

Typical device performance

The following plots show typical device performances

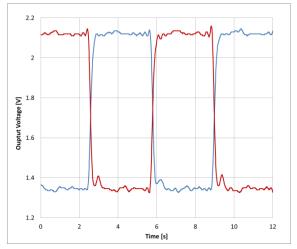


Figure 22. 156.25MHz LVPECL

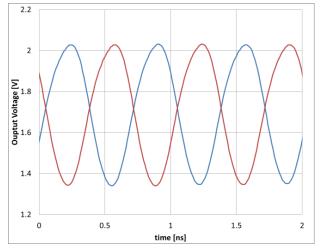


Figure 23. 1.5GHz LVPECL

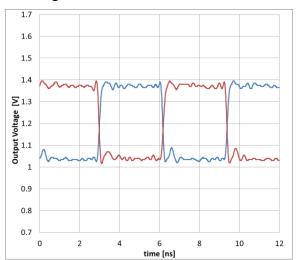


Figure 24. 156.25MHz LVDS

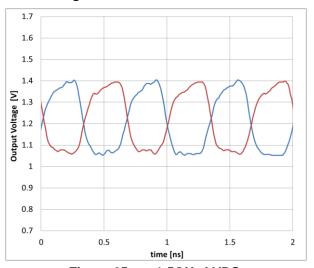


Figure 25. 1.5GHz LVDS

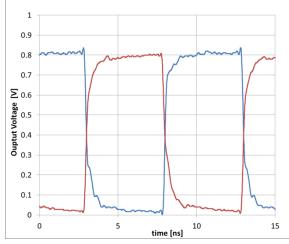


Figure 26. 100MHz HCSL

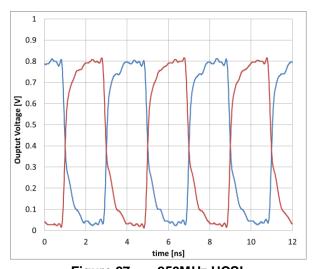


Figure 27. 250MHz HCSL

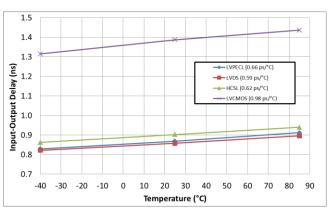


Figure 28. I/O delay vs temperature

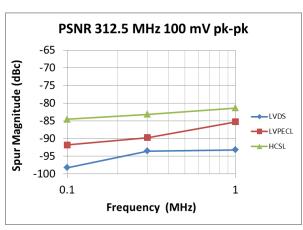


Figure 29. PSNR vs noise frequency

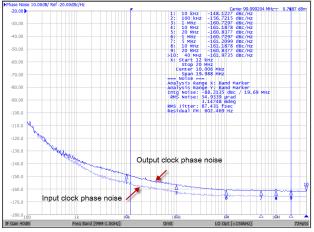


Figure 30. 100MHz LVPECL Phase Noise

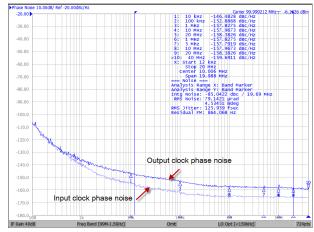


Figure 31. 100MHz LVDS Phase Noise

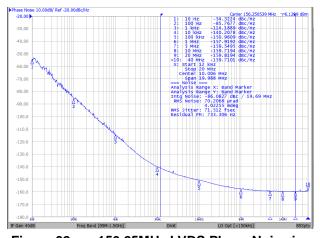


Figure 32. 156.25MHz LVDS Phase Noise in Xtal mode

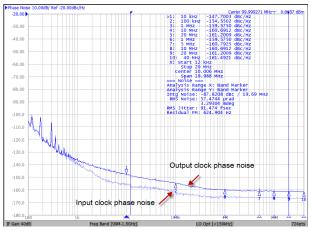
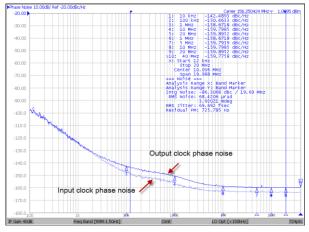



Figure 33. 100MHz HCSL Phase Noise

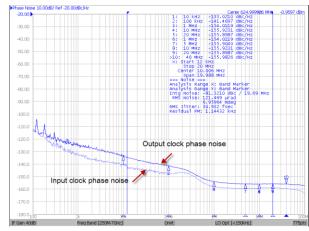
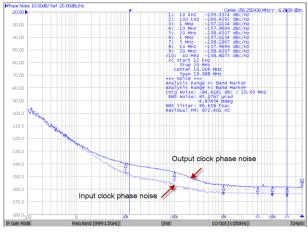



Figure 34. 156.25MHz LVPECL Phase Noise

Figure 35. 625MHz LVPECL Phase Noise

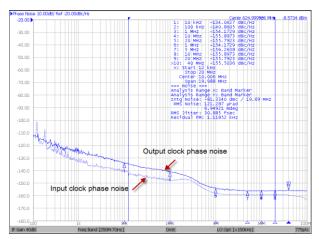


Figure 36. 156.25MHz LVDS Phase Noise

Figure 37. 625MHz LVDS Phase Noise

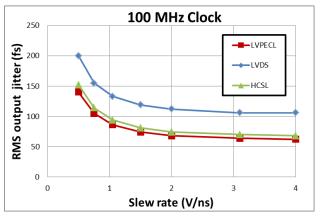


Figure 38. Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate

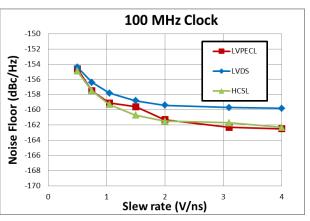


Figure 39. Output clock noise floor vs input clock slew-rate

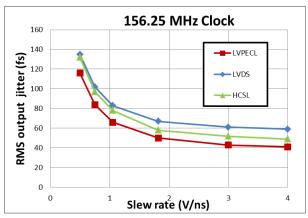


Figure 40. Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate

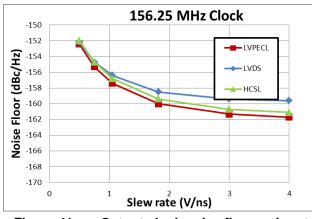


Figure 41. Output clock noise floor vs input clock slew-rate

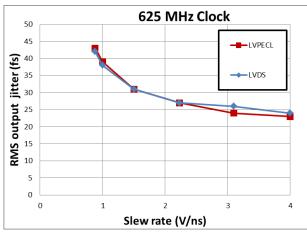


Figure 42. Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate

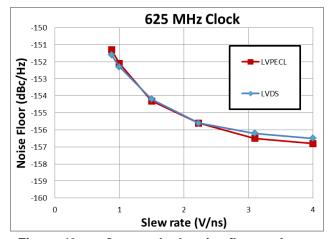


Figure 43. Output clock noise floor vs input clock slew-rate

Register Map

The device is controlled by accessing registers through the serial interface. The following table provides a summary of the registers available for the configuration of the device.

Table 4 Register Map

Address SPI A[6:0] Hex (0x)	Name	Data D[7:0]
00	XTALBG	xtal_buf_gain[7:0]
01	XTALDL	xtal_drive_level[7:0]
02	XTALLC	xtal_load_cap[7:0]
03	XTALNR	xtal_normal_run
04	-	Not used
05	INSEL	input_select[1:0]
06	OUTLOW	output_drive_low
07	DRVTYPEA	{driver_type[5:4], 4'bxxxx} (differential output 1 and 0)
08	-	Not used
09	DRVTYPEB	{driver_type[17:12], 2'bxx} (differential output 4, 3, and 2)
0A	-	Not used
0B	CMOSDIV	cmos_div[2:0] (cmos)
0C	CMOSOUTEN	output_enable (cmos)
0D	CMOSDRVSTR	driver_strength (cmos)
0E	-	Not used
0F/11	Reserved	Leave as default
11	DEVID	Device ID
12 to 1F	Reserved	Leave as default

Address	0x00			Hex
XTALBG	·	XTAL Buffer Gain		
Bit	Name	Description	Туре	Reset
7:0	xtal_buf_gain[7:0]	Programs crystal buffer (inverting amplifier) gain. Every bit pair (bits: 01, 23, 45, 67) of this register correspond to additional equal gain block which can be added (bits set) or removed (bits cleared). Minimum gain is 0x00 (default) and 0xFF is maximum gain When reference input mode is "bypass XTAL mode" or "differential input modes" with HIGH xtal_normal_run bit, the buffer is disabled and follows "Input Selection". When xtal_normal_run bit is LOW, XTAL buffer is in the "xtal forced run" mode and keep running. 8'b0000_0000: default crystal buffer strength. 8'b0000_0011: enable additional buffer strength 8'b0001_0000: enable additional buffer strength 8'b0011_0000: enable additional buffer strength 8'b1100_0000: enable additional buffer strength	RW	FF

Address	0x01			Hex
XTALDL	•	XTAL Drive Level		
Bit	Name	Description	Type	Reset
7:0	xtal_drive_level[7:0]	Internal damping resistance of crystal circuit to limit external crystal's drive level uW. The value of damping resistor is determined by crystal's motion resistance of crystal's equivalent circuit. Drive level should be lower than crystal manufacturer's specification. Crystal's equivalent values should be requested to the manufacturer, (motion resistance and shunt capacitance). The selected resistors are connected to XOUT. Multiple bit combinations available by 7-bit control. Because they use parallel connections, 0xFF is the smallest resistance and 0x01 is the highest resistance. 8'b0000_0000: disable all resistors 8'b0000_0010: 161 Ohm resistor 8'b0000_0100: 42 Ohm resistor 8'b0000_1000: 42 Ohm resistor 8'b0001_0000: 21 Ohm resistor 8'b0010_0000: 10.5 Ohm resistor 8'b0100_0000: 0 Ohm connection 8'b1000_0000: not used	RW	04

Address	0x02			Hex
XTALLC		XTAL Load Capacitance 0		
Bit	Name	Description	Туре	Reset
7:0	xtal_load_cap[7:0]	Internal load capacitance of crystal circuit (0 pF to 21.75 pF with the resolution of 0.25 pF). XIN and XOUT have each capacitor connected to GND. Multiple bit combinations available between 8 capacitors. 8'b0000_0000: disable all xtal load capacitors 8'b0000_0001: enable capacitor 0.25 pF 8'b0000_0010: enable capacitor 0.5 pF 8'b0000_0100: enable capacitor 1 pF 8'b0000_1000: enable capacitor 2 pF 8'b0001_0000: enable capacitor 2 pF 8'b0010_0000: enable capacitor 4 pF 8'b0100_0000: enable capacitor 4 pF 8'b1000_0000: enable capacitor 8 pF	RW	40

Address	0x03			Bin
XTALNR XTAL Normal Run				
Bit	Bit Name Description		Туре	Reset
7:1	Reserved	Reserved	R	1111111
0	xtal_normal_run	When this bit is set high crystal oscillator circuit is running only if input_select[1:0] register at address 0x05 selects crystal mode (2'b10). This value is recommended because it provides best jitter performanceXO circuit is running only when it is needed. When this bit is set low the crystal oscillator will keep running even if crystal oscillator is not selected in input_select[1:0] register at address 0x05. This mode should only be used when fast switching between input references and crystal oscillator is required.	RW	1

Address	0x05			Bin
INSEL		Input Select Register		
Bit	Name	Description	Туре	Reset
7:2	Reserved	Reserved	R	111111
1:0	input_select[1:0]	Input reference clock selection. Proper external coupling and termination are required. 2'b00: differential input from IN0_p and IN0_n 2'b01: differential input from IN1_p and IN1_n 2'b10: fundamental XTAL mode with XIN and XOUT (Use internal crystal oscillator circuits) or XTAL overdrive mode (single-ended clock signal fed to XIN) 2'b11: XTAL bypass mode (single-ended clock signal with XIN and disabled internal crystal buffer circuit in the analog block)	RW	00

Address	0x06			Hex
OUTLOW	+	Output Drive Low		
Bit	Name	Description	Туре	Reset
7:1	Reserved	Reserved	R	1111111
0	output_drive_low	Forces all disabled outputs to drive low in LVPECL mode.	RW	0
		1'b1: All differential outputs that are disabled in DRVTYPE registers (addresses 0x07, 0x08, 0x09 and 0x0A) will drive low in LVPECL mode. Hence, LVPECL biasing/termination resistors are required for proper functionality of this feature.		
		1'b0: This feature is ignored and all outputs that are disabled in DRVTYPE registers (addresses 0x07, 0x08, 0x09 and 0x0A) will stay in disabled (high-Z) mode.		

Address	0x07			Bin
DRVTYPEA Output Type Select Bank-A Bit Name Description		Output Type Select Bank-A		
		Туре	Reset	
7:6	driver_type[7:6]	Output driver type of differential OUT1.	RW	11
		The same description as for OUT0.		
4:3	driver_type[5:4]	Output driver type of differential OUT0.	RW	11
		2'b00: LVPECL outputs		
		2'b01: LVDS outputs		
		2'b10: HCSL outputs		
		2'b11: outputs disabled (Disabled state is dependent on "out_drive_low" control bit of register OUTLOW.")		
3:0	Reserved	Reserved	RO	X

Address	0x09			Bin
DRVTYPE	3	Output Type Select Bank-B		
Bit	Bit Name Description		Туре	Reset
7:6	driver_type[17:16]	Output driver type of differential OUT4.	RW	11
		The same description as for OUT0.		
5:4	driver_type[15:14]	Output driver type of differential OUT3.	RW	11
		The same description as for OUT0.		
3:2	driver_type[13:12]	Output driver type of differential OUT2.	RW	11
		The same description as for OUT0.		
1:0	Reserved	Reserved	RO	Χ

Address	0x0B			Bin
CMOSDIV		CMOS Output Divider		
Bit	Name	Description	Туре	Reset
7:3	Reserved	Reserved	R	11111
2:0	cmos_div[2:0]	Integer divider from a selected input reference clock for OUT_LVCMOS (1 to 8). 3'b000: division ratio = 1 3'b001: division ratio = 2 3'b010: division ratio = 3 3'b011: division ratio = 4 3'b100: division ratio = 5 3'b101: division ratio = 6 3'b110: division ratio = 7 3'b111: division ratio = 8	RW	000

Address	0x0C			Bin
CMOSOUT	EN	LVCMOS Output Enable		
Bit	Bit Name Description		Туре	Reset
7:1	Reserved	Reserved	R	1111111
0	output_enable	Output enable of OUT_LVCMOS. Disabled state is dependent on "out_drive_low" control bit. 1'b0: Disable OUT_LVCMOS output	RW	1
		1'b1: Enable OUT_LVCMOS output		

Address	0x0D			Bin
CMOSDRV	STR	CMOS Driver Strength		
Bit	Name	Description	Туре	Reset
7:1	Reserved	Reserved	R	1111111
0	driver_strength	OUT_LVCMOS output strength. 1'b0: low strength	RW	0
		1'b1: high strength		

Data Sheet ZL40235

Address	0x11			Bin
DEVID	1	Device Identification		
Bit	Name	Description	Туре	Reset
7	Unused	Unused	R	0
6:5	Reserved	Reserved	R	11
4:0	dev_id	Device ID	RO	00010
		5'h02: ZL40235		

AC and DC Electrical Characteristics

Absolute Maximum Ratings

Table 5 Absolute Maximum Ratings*

	Parameter	Sym.	Min.	Тур.	Max.	Units	Notes
1	Supply voltage (3.3V)	V_{DD}/V_{DDO}	-0.5		4.6	V	
2	Supply voltage (2.5V)	V _{DD} /V _{DDO}	-0.5		3.5	V	
3	Storage temperature	T _{ST}	-55		125	°C	

^{*} Exceeding these values may cause permanent damage

Recommended Operating Conditions

Table 6 Recommended Operating Conditions*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Supply voltage 3.3V	V _{DD} /V _{DDO} /V _{DD_LVCMOS}	3.135	3.30	3.465	V	
2	Supply voltage 2.5V	V _{DD} /V _{DDO} /V _{DD_LVCMOS}	2.375	2.50	2.625	V	
3	Supply voltage 1.8V	V _{DD_LV} cmos	1.6	1.8V	2	V	
4	Supply voltage 1.5V	V _{DD_LV} cmos	1.35	1.5	1.65	V	
5	Operating temperature	T _A	-40	25	85	°C	
6	Input voltage	V _{DD-IN}	- 0.3		V _{DD} + 0.3	V	

^{*} Voltages are with respect to ground (GND) unless otherwise stated

Table 7 Current consumption

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Core device current (all outputs and XTAL disabled)	I _{s_3.3V}		163	197	mA	VDD= 3.3V+5%
'	Core device current (all outputs and XTAL disabled)	I _{s_2.5V}		153	187	mA	VDD = 2.5V+5%
2	Core device current (all outputs disabled) XTAL circuit enabled with 25MHz Crystal connected between XIN and	I _{DD_XTAL_3.3V}		128	154	mA	VDD= 3.3V+5%
2	XOUT	I _{DD_XTAL_2.5V}		124	150	mA	VDD= 2.5V+5%
3	Common output ourrent	I _{DD_CM_3.3V}		13.44	15.05	mA	VDDO= 3.3V+5%
3	Common output current	I _{DD_CM_2.5V}		12.18	13.65	mA	VDDO= 2.5V+5%
4	Dynamic LVCMOS current for high strength output (f = 100MHz)	I _{DD_3.3V}		4.08	4.74	mA	VDDO= 3.3V+5%
4	Needs to be scaled for different frequencies by f/100MHz	I _{DD_2.5V}		2.90	3.29	mA	VDDO= 2.5V+5%
5	Dynamic LVCMOS current for low strength output (f = 100MHz)	I _{DD_3.3V}		2.38	2.68	mA	VDDO= 3.3V+5%
5	Needs to be scaled for different frequencies by f/100MHz	I _{DD_2.5V}		1.74	1.96	mA	VDDO= 2.5V+5%
6	Current dissipation per LVPECL output	I _{DD_LV PECL_3.3V}		19.36	23.26	mA	VDDO= 3.3V+5%
U	Current dissipation per EVI ECE output	I _{DD_LV PECL_2.5V}		19.38	22.17	mA	VDDO= 2.5V+5%
7	Current dissipation per LVDS output	I _{DD_LV DSL_3.3V}		6.73	8.00	mA	VDDO= 3.3V+5%
'	Current dissipation per EVD3 output	I _{DD_LV DS_2.5V}		6.87	7.83	mA	VDDO= 2.5V+5%
8	Current dissipation per HCSL output	I _{DD_HCSL_3.3V}		16.43	19.87	mA	VDDO= 3.3V+5%
0	Current dissipation per 1100£ output	I _{DD_HCSL_2.5V}		17.14	19.18	mA	VDDO= 2.5V+5%

^{*} Functional operation under these conditions is not implied
* Voltages are with respect to ground (GND) unless otherwise stated

^{*} The device core supports two power supply modes (3.3V and 2.5V)

Table 8 Input Characteristics*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	CMOS high-level input voltage for control inputs	VciH	1.05			V	
2	CMOS low-level input voltage for control inputs	V _{CIL}			0.45	V	
3	CMOS input leakage current for control inputs (includes current due to pull down resistors)	I⊩	-25		50	μA	$V_I = V_{DD}$ or 0 V
4	Differential input common mode voltage for IN0_p/n and IN1_p/n	V _{CM}	1		2	٧	
5	Differential input voltage difference for IN0_p/n and IN1_p/n f ≤ 1GHz **	V _{ID}	0.15		1.3	V	
6	Differential input voltage difference for IN0_p/n and IN1_p/n for 1GHz < f ≤ 1.6GHz **	V _{ID}	0.35		1.3	V	
7	Differential input leakage current for IN0_p/n and IN1_p/n (includes current due to pull-up and pull-down resistors)	I⊩	-150		150	μA	V _I = 2V or 0V
8	Single ended input voltage for IN0_p and IN1_p	Vsi	-0.3		2.7	V	VDD = 3.3V or 2.5V
9	Single ended input common mode voltage (IN0_p/n and IN1_p/n)	Vsic	1		2	V	VDD = 3.3V or 2.5V
10	Single ended input voltage swing for IN0_p and IN1_p	V _{SID}	0.3		1.3	V	VDD = 3.3V or 2.5V
11	Input frequency (differential)	f _{IN}	0		1600	MHz	
12	Input frequency (LVCMOS)	f _{IN_CMOS}	0		250	MHz	
13	Input duty cycle	dc	35%		65%		
14	Input slew rate	slew		2		V/ns	
15	Input pull-up/ pull-down resistance	R _{PU} /R _{PD}		60kΩ			
16	Input pull-down resistance for INx_p	R _{PD}		30kΩ			
				-84			f _{IN} = 100 MHz
17	Input multiplexer isolation IN0_p/n to IN1_p/n and vice versa	Iso		-82		dBc	fin= 200 MHz
''	Power on both inputs 0dBm, foffset > 50kHz	130		-71		ubc	f _{IN} = 400 MHz
				-67			f _{IN} = 800 MHz

^{*} Values are over Recommended Operating Conditions

^{**}Input differential voltage is calculated as $V_{ID} = V_{IH} \cdot V_{L}$ where V_{IH} and V_{L} are input voltage high and low respectively. It should not be confused with $V_{ID} = 2 * (V_{IH} \cdot V_{L})$ used in some datasheets. Please refer to Figure 44.

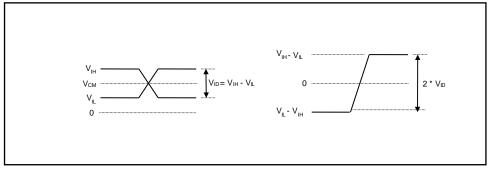


Figure 44. **Differential Input Voltage Levels**

^{*} Values are over all two power supply modes (V_{DD} = 3.3V and V_{DD} = 2.5V) * Input mux isolation is measured as amplitude of foffset spur in dBc on the output clock phase noise plot

Table 9 Crystal Oscillator Characteristics*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Mode of oscillation	mode	ı	undament	al		
2	Frequency	f	8		160	MHz	
3	On chip load capacitance in SPI controlled mode	C∟	0		21.75	pF	Programmable
4	On chip load capacitance in pin controlled mode			4		pF	Fixed
5	On chip series resistor in SPI controlled mode	Rs	0		312	Ω	Programmable
6	On chip series resistor in pin controlled mode			84		Ω	Fixed
7	On chip shunt resistor	R		500		kΩ	
8	Frequency in overdrive mode ⁽¹⁾	fov	0.1		250	MHz	Functional but may not meet AC parameters Minimum depends on AC coupling Capacitor (0.1uF assumed)
9	Frequency in bypass mode ⁽²⁾	fвр	0		250	MHz	Functional but may not meet AC parameters

^{*} Values are over Recommended Operating Conditions

Table 10 Power Supply Rejection Ratio for VDD = VDDO = 3.3V*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
	PSRR for LVPECL output			-71.75			f _{IN} = 156.25 MHz
1		PSRR _{LVPECL}		-84.45		dBc	f _{IN} = 312.5 MHz
				-82.11			fin= 625 MHz
	PSRR for LVDS output	PSRR _{LVDS}		-95.16			f _{IN} = 156.25 MHz
2				-97.77		dBc	f _{IN} = 312.5 MHz
				-79.23			f _{IN} = 625 MHz
				-77.15			f _{IN} = 100 MHz
3	PSRR for HCSL output	PSRR _{HCSL}		-76.75		dBc	f _{IN} = 156.25 MHz
				-80.44			f _{IN} = 312.5 MHz

 $^{^{\}star}$ Values are over all two power supply modes (V_{DD}= 3.3V and V_{DD}= 2.5V)

⁽¹⁾ Maximum input level is 2V (2) Maximum output level is VI

Maximum output level is VDD

^{*} Values are over Recommended Operating Conditions

* Noise injected to VDDO power supply with frequency 100 kHz and amplitude 100 mVpp

* PSRR is measured as amplitude of 100 kHz spur in dBc on the output clock phase noise plot

Table 11 Power Supply Rejection Ratio for VDD = VDDO = 2.5V*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes	
	PSRR for LVPECL output			-73.68			f _{IN} = 156.25 MHz	
1		PSRR _{LVPECL}		-78.88		dBc	f _{IN} = 312.5 MHz	
				-71.82			f _{IN} = 625 MHz	
	PSRR for LVDS output	PSRR _{LVDS}		-90.04			f _{IN} = 156.25 MHz	
2			PSRR _{LVDS}		-79.99		dBc	f _{IN} = 312.5 MHz
				-73.45			f _{IN} = 625 MHz	
	PSRR for HCSL output	PSRR _{HCSL}	PSRR _{HCSL}		-92.16			f _{IN} = 100 MHz
3					-74.08		dBc	f _{IN} = 156.25 MHz
				-91.88			f _{IN} = 312.5 MHz	

Table 12 LVCMOS Output Characteristics for VDDO = 3.3V*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage (1mA load)	V _{OH}	VDDO-0.1			V	DC Measurement
2	Output low voltage (1 mA load)	Vol			0.1	V	DC Measurement
3	Output High Current (Load adjusted to Vout = VDDO/2)	Іон		30		mA	DC Measurement
4	Output Low Current (Load adjusted to Vout = VDDO/2)	loL		34		mA	DC Measurement
5	Output impedance	Ro		15		Ω	DC Measurement
6	Rise time (20% to 80%)	tr		220	310	ps	
7	Fall time (20% to 80%)	t _f		320	365	ps	
8	Output frequency	Fo	0		250	MHz	
9	Input to output delay	t _{IOD}	1.07	1.28	2.07	ns	
10	Output enable time	t _{EN}			3	cycles	
11	Output disable time	T _{DIS}			3	cycles	
12	Additive RMS jitter in 1MHz to 5MHz band	Т _{ј_1М_5М}		46	80	fs	Input Clock 25MHz
13	Additive RMS jitter in 12kHz to 5MHz band	T _{j_12K_5M}		56	90	fs	Input Clock 25MHz
14	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		60	79	fs	Input Clock 125MHz
15	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		65	86	fs	Input Clock 125MHz
16	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		61	94	fs	Input Clock 156.25MHz
17	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		66	100	fs	Input Clock 156.25MHz
18				-165	-162	dBc/Hz	Input clock: 25 MHz
19	Noise floor	N _F		-160	-156	dBc/Hz	Input clock: 125 MHz
20				-158	-153	dBc/Hz	Input clock: 156.25 MHz

^{*} Values are over Recommended Operating Conditions

^{*} Values are over Recommended Operating Conditions

* Noise injected to VDDO power supply with frequency 100 kHz and amplitude 100 mVpp

* PSRR is measured as amplitude of 100 kHz spur in dBc on the output clock phase noise plot

Table 13 LVCMOS Output Characteristics for VDDO = 2.5V*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage (1 mA load)	V _{он}	VDDO-0.1			V	DC Measurement
2	Output low voltage (1 mA load)	V _{OL}			0.1	V	DC Measurement
3	Output High Current (Load adjusted to Vout = VDDO/2)	Іон		21		mA	DC Measurement
4	Output Low Current (Load adjusted to Vout = VDDO/2)	loL		25		mA	DC Measurement
5	Output impedance	Ro		15		Ω	DC Measurement
6	Rise time (20% to 80%)	tr		225	310	ps	
7	Fall time (20% to 80%)	t _f		320	365	ps	
8	Output frequency	Fo	0		250	MHz	
9	Input to output delay	t _{IOD}	1.10	1.41	2.30	ns	
10	Output enable time	t _{EN}			3	cycles	
11	Output disable time	T _{DIS}			3	cycles	
12	Additive RMS jitter in 1MHz to 5MHz band	Т _{і_1М_5М}		51	104	fs	Input Clock 25MHz
13	Additive RMS jitter in 12kHz to 5MHz band	T _{j_12k_5M}		62	111	fs	Input Clock 25MHz
14	Additive RMS jitter in 1MHz to 20MHz band	Т _{ј_1М_20М}		64	81	fs	Input Clock 125MHz
15	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		70	88	fs	Input Clock 125MHz
16	Additive RMS jitter in 1MHz to 20MHz band	Т _{і_1М_20М}		62	94	fs	Input Clock 156.25MHz
17	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		68	100	fs	Input Clock 156.25MHz
18				-164	-161	dBc/Hz	Input clock: 25 MHz
19	Noise floor	N _F		-159	-155	dBc/Hz	Input clock: 125 MHz
20				-158	-153	dBc/Hz	Input clock: 156.25 MHz

^{*} Values are over Recommended Operating Conditions

Table 14 LVPECL Output Characteristics for VDDO = 3.3V*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage	V _{LV PECL_OH}	1.9	2.08	2.4	V	DC Measurement
2	Output low voltage	V _{LV PECL_OL}	1.2	1.36	1.7	V	DC Measurement
3	Output differential swing**	V _{LVPECL_SW}	0.6	0.72	0.9	V	DC Measurement
4	Variation of V _{LVPECL_SW} for complementary output states	$\Delta V_{\text{LVPECL_SW}}$	0	0.02	0.07	٧	
5	Common mode output	V _{CM}	1.6	1.72	2.1	V	
7	Output frequency when V _{LVPECL_SW} ≥ 0.6V	F _{MAX_0.6VSW}			800	MHz	
8	Output frequency when V _{LVPECL_SW} ≥ 0.4V	F _{MAX_0.4VSW}			1600	MHz	
9	Rise or fall time (20% to 80%)	t _r , t _f		110	170	ps	
10	Output frequency	Fo	0		1600	MHz	
11	Output to output skew	toosk			40	ps	
12	Device to device output skew	t _{DOOSK}			120	ps	
13	Input to output delay	t _{IOD}	0.73	0.87	1.1	ns	
14	Output enable time	t _{EN}			3	cycles	
15	Output disable time	t _{DIS}			3	cycles	
				68	96	fs	Input clock: 100 MHz
16	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		50	64	fs	Input clock: 156.25MHz
				20	32	fs	Input clock: 625 MHz
				71	101	fs	Input clock: 100 MHz
17	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		55	70	fs	Input clock: 156.25MHz
				25	39	fs	Input clock: 625 MHz
				-161	-159	dBc/Hz	Input clock: 100 MHz
18	Noise floor	N _F		-160	-155	dBc/Hz	Input clock: 156.25 MHz
				-155	-151	dBc/Hz	Input clock: 625 MHz

^{*} Values are over Recommended Operating Conditions

^{**}Output differential swing is calculated as $V_{SW} = V_{OHT}V_{OL}$ It should not be confused with $V_{SW} = 2 * (V_{OHT}V_{OL})$ used in some datasheets. Please refer to Figure 45.

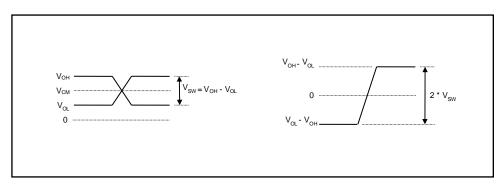


Figure 45. Differential Output Voltage Levels

Table 15 LVPECL Output Characteristics for VDDO = 2.5V*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage	V _{LV PECL_OH}	1.1	1.28	1.7	٧	DC Measurement
2	Output low voltage	V _{LV PECL_OL}	0.4	0.57	0.9	٧	DC Measurement
3	Output differential swing**	V _{LVPECL_SW}	0.6	0.71	0.9	V	DC Measurement
4	Variation of V _{LVPECL_SW} for complementary output states	$\Delta V_{\text{LVPECL_SW}}$	0	0.02	0.05	٧	
5	Common mode output	V _{CM}	0.8	0.92	1.2	٧	
7	Output frequency when V _{LVPECL_SW} ≥ 0.6V	F _{MAX_0.6VSW}			800	MHz	
8	Output frequency when V _{LVPECL_SW} ≥ 0.4V	F _{MAX_0.4VSW}			1600	MHz	
9	Rise or fall time (20% to 80%)	t _r , t _f		120	170	ps	
10	Output frequency	Fo	0		1600	MHz	
11	Output to output skew	toosk			40	ps	
12	Device to device output skew	t _{DOOSK}			120	ps	
13	Input to output delay	t _{IOD}	0.75	0.87	1.1	ns	
14	Output enable time	t _{EN}			3	cycles	
15	Output disable time	t _{DIS}			3	cycles	
				65	91	fs	Input clock: 100 MHz
16	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		50	64	fs	Input clock: 156.25MHz
				20	30	fs	Input clock: 625 MHz
				69	99	fs	Input clock: 100 MHz
17	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		54	75	fs	Input clock: 156.25MHz
				26	41	fs	Input clock: 625 MHz
				-161	-159	dBc/Hz	Input clock: 100 MHz
18	Noise floor	N _F		-160	-156	dBc/Hz	Input clock: 156.25 MHz
				-155	-151	dBc/Hz	Input clock: 625 MHz

^{*}Values are over Recommended Operating Conditions
**Output differential swing is calculated as V_{SW} = V_{OH}-V_{OL} It should not be confused with V_{SW} = 2 * (V_{OH}-V_{OL}) used in some datasheets. Please refer to Figure 45.

Table 16 LVDS Outputs for VDDO = 3.3V*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage	V _{LVDS_OH}	1.3	1.39	1.47	V	DC Measurement
2	Output low voltage	V _{LVDS_OL}	1.0	1.07	1.15	V	DC Measurement
3	Output differential swing**	V _{LV DS_SW}	0.25	0.32	0.39	V	DC Measurement
4	Variation of V _{LVDS_SW} for complementary output states	ΔV_{LVDS_SW}	0	0.002	0.01	V	
5	Common mode output	V _{CM}	1.15	1.23	1.3	V	
6	Variation of V _{CM} for complementary output states	ΔV_{CM}	0	0.001	0.01	٧	
7	Output frequency when V _{LVDS_SW} ≥ 250mV	F _{MAX_0.25VSW}			800	MHz	
8	Output frequency when V _{LVDS_SW} ≥ 200mV	F _{MAX_0.2VSW}			1600	MHz	
9	Rise or fall time (20% to 80%)	t _r , t _f		110	170	ps	
10	Output frequency	Fo	0		1600	MHz	
11	Output to output skew	toosk			20	ps	
12	Device to device output skew	t _{DOOSK}			130	ps	
13	Input to output delay	t _{IOD}	0.76	0.86	1.1	ns	
14	Output Short Circuit Current Single Ended	ls	-24		24	mA	Single ended outputs shorted to GND
15	Output Short Circuit Current Differential	Isp	-24		24	mA	Complementary outputs shorted
16	Output enable time	t _{EN}			3	cycles	
17	Output disable time	t _{DIS}			3	cycles	
				110	144	fs	Input clock: 100 MHz
18	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		63	81	fs	Input clock: 156.25MHz
				21	33	fs	Input clock: 625 MHz
				115	150	fs	Input clock: 100 MHz
19	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		73	102	fs	Input clock: 156.25MHz
				26	40	fs	Input clock: 625 MHz
				-158	-156	dBc/Hz	Input clock: 100 MHz
20	Noise floor	N _F		-158	-155	dBc/Hz	Input clock: 156.25 MHz
				-154	-151	dBc/Hz	Input clock: 625 MHz

^{*} Values are over Recommended Operating Conditions

^{**}Output differential swing is calculated as V_{SW} = V_{OH}-V_{OL}. It should not be confused with V_{SW} = 2 * (V_{OH}-V_{OL}) used in some datasheets. Please refer to Figure 45.

Table 17 LVDS Outputs for VDDO = 2.5V*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage	V _{LVDS_OH}	1.3	1.4	1.5	V	DC Measurement
2	Output low voltage	V _{LVDS_OL}	0.97	1.05	1.13	٧	DC Measurement
3	Output differential swing**	V _{LV DS_SW}	0.25	0.35	0.44	V	DC Measurement
4	Variation of V _{LVDS_SW} for complementary output states	$\Delta V_{\text{LVDS_SW}}$	0	0.001	0.01	V	
5	Common mode output	V _{CM}	1.15	1.23	1.3	V	
6	Variation of V _{CM} for complementary output states	ΔV_{CM}	0	0.001	0.01	٧	
7	Output frequency when V _{LVDS_SW} ≥ 250mV	F _{MAX_0.25VSW}			800	MHz	
8	Output frequency when V _{LVDS_SW} ≥ 200mV	F _{MAX_0.2VSW}			1600	MHz	
9	Rise or fall time (20% to 80%)	t _r , t _f		110	170	ps	
10	Output frequency	Fo	0		1600	MHz	
11	Output to output skew	toosk			20	ps	
12	Device to device output skew	t _{DOOSK}			130	ps	
13	Input to output delay	t _{IOD}	0.78	0.86	1.12	ns	
14	Output Short Circuit Current Single Ended	Is	-24		24	mA	Single ended outputs shorted to GND
15	Output Short Circuit Current Differential	I _{SD}	-24		24	mA	Complementary outputs shorted
16	Output enable time	t _{EN}			3	cycles	
17	Output disable time	t _{DIS}			3	cycles	
				107	140	fs	Input clock: 100 MHz
18	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		62	77	fs	Input clock: 156.25MHz
				20	31	fs	Input clock: 625 MHz
				111	146	fs	Input clock: 100 MHz
19	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		66	83	fs	Input clock: 156.25MHz
				24	36	fs	Input clock: 625 MHz
				-158	-156	dBc/Hz	Input clock: 100 MHz
20	Noise floor	N _F		-159	-155	dBc/Hz	Input clock: 156.25 MHz
				-155	-151	dBc/Hz	Input clock: 625 MHz

^{*} Values are over Recommended Operating Conditions

**Output differential swing is calculated as V_{SW} = V_{OH}-V_{OL} It should not be confused with V_{SW} = 2 * (V_{OH}-V_{OL}) used in some datasheets. Please refer to Figure 45.

Table 18 HCSL Outputs for VDDO = 3.3V*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage	V _{HCSL_OH}	0.6	0.85	1.1	V	DC Measurement
2	Output low voltage	V _{HCSL_OL}	-0.05	0	0.05	V	DC Measurement
3	Output differential swing**	V _{HCSL_SW}	0.6	0.85	1.1	V	DC Measurement
4	Variation of V _{HCSL_SW} for complementary output states	ΔV_{HCSL_SW}	0	0.003	0.05	٧	
5	Common mode output	V _{см}	0.28	0.43	0.55	٧	
6	Variation of V _{CM} for complementary output states	ΔV _{СМ}	0	0.002	0.05	٧	
7	Absolute Crossing Voltage	V _{CROSS}	0.320	0.384	0.447	V	
8	Total Variation of V _{CROSS}	ΔV_{CROSS}			0.127	V	
9	Output frequency	F _{MAX}	0		400	MHz	
10	Rise or fall time (20% to 80%)	t _r , t _f		143	309	ps	
11	Output to output skew	t _{oosk}			21	ps	
12	Device to device output skew	t _{DOOSK}			129	ps	
13	Input to output delay	t _{IOD}	0.73	0.90	1.08	ns	
14	Output enable time	t _{EN}			3	cycles	
15	Output disable time	t _{DIS}			3	cycles	
16	Additive Jitter as per PCle 3.0 (PLL_BW = 2 to 5MHz, CDR = 10MHz)	T _{jPCle_3.0}		20	40	fs	Input clock: 100MHz
47	Addition DMC Street in AMILIA to COMILIA hand	_		73	104	fs	Input clock: 100 MHz
17	Additive RMS jitter in 1MHz to 20MHz band	Т _{ј_1М_20М}		53	69	fs	Input clock: 156.25MHz
18	Additive DMC litter in 19kUz to 20MUz hand	т		77	112	fs	Input clock: 100 MHz
18	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		64	100	fs	Input clock: 156.25MHz
10	Noise floor	N		-161	-159	dBc/Hz	Input clock: 100 MHz
19	Noise iloui	N _F		-159	-155	dBc/Hz	Input clock: 156.25 MHz

^{*} Values are over Recommended Operating Conditions

^{**}Output differential swing is calculated as $V_{SW} = V_{OH} V_{OL}$ It should not be confused with $V_{SW} = 2 * (V_{OH} V_{OL})$ used in some datasheets. Please refer to Figure 45.

Table 19 HCSL Outputs for VDDO = 2.5V*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage	V _{HCSL_OH}	0.6	0.83	1.1	V	DC Measurement
2	Output low voltage	V _{HCSL_OL}	-0.05	0	0.05	V	DC Measurement
3	Output differential swing**	V _{HCSL_SW}	0.5	0.83	1.1	V	DC Measurement
4	Variation of V _{HCSL_SW} for complementary output states	ΔV_{HCSL_SW}	0	0.003	0.05	V	
5	Common mode output	V _{см}	0.28	0.42	0.55	V	
6	Variation of V _{CM} for complementary output states	ΔV _{СМ}	0	0.002	0.05	V	
7	Absolute Crossing Voltage	V _{CROSS}	0.260	0.316	0.372	V	
8	Total Variation of V _{CROSS}	ΔV_{CROSS}			0.108	V	
9	Output frequency	F _{MAX}	0		400	MHz	
10	Rise or fall time (20% to 80%)	t _r , t _f		125	162	ps	
11	Output to output skew	toosk			21	ps	
12	Device to device output skew	t _{DOOSK}			129	ps	
13	Input to output delay	t _{IOD}	0.76	0.92	1.10	ns	
14	Output enable time	t _{EN}			3	cycles	
15	Output disable time	t _{DIS}			3	cycles	
16	Additive Jitter as per PCle 3.0 (PLL_BW = 2 to 5MHz, CDR = 10MHz)	T _{jPCle_3.0}		20	40	fs	Input clock: 100MHz
17	Additive DMC litter in 1MHz to 20MHz hand	_		68	95	fs	Input clock: 100 MHz
17	Additive RMS jitter in 1MHz to 20MHz band	Т _{ј_1М_20М}		52	66	fs	Input clock: 156.25MHz
10	Additive DMC litter in 19kUz to 20MUz hand	т		72	102	fs	Input clock: 100 MHz
18	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		56	71	fs	Input clock: 156.25MHz
40	Niciae flace	N		-161	-158	dBc/Hz	Input clock: 100 MHz
19	Noise floor	N _F		-160	-153	dBc/Hz	Input clock: 156.25 MHz

^{*} Values are over Recommended Operating Conditions

^{**}Output differential swing is calculated as $V_{SW} = V_{OH} V_{OL}$ It should not be confused with $V_{SW} = 2 * (V_{OH} V_{OL})$ used in some datasheets. Please refer to Figure 45.

Table 20 LVCMOS Output Phase Noise with 25 MHz XTAL*

	Characteristics	Min.	Тур.	Max.	Units	Notes
1	Jitter RMS in 12kHz to 5MHz band		103		fs	VDD = 3.3V, VDDO = 3.3V
ļ '	Sitter KWS III 12KH2 to SWI12 band		117		fs	VDD = 2.5V; VDDO = 2.5V
			-75		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-107		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-132		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-150		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
			-162		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-166		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2	Noise floor		-166		dBc/Hz	@5MHz, VDD = 3.3V, VDDO = 3.3V
	Noise nooi		-70		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-102		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-130		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-149		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-161		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-165		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-165		dBc/Hz	@5MHz, VDD = 2.5V; VDDO = 2.5V

^{*} Values are over Recommended Operating Conditions

Table 21 LVPECL Output Phase Noise with 25 MHz XTAL*

	Characteristics	Min.	Тур.	Max.	Units	Notes
1	I'm - DMO : 40HH- to 5MH- to - 1		265		fs	VDD = 3.3V, VDDO = 3.3V
1	Jitter RMS in 12kHz to 5MHz band		213		fs	VDD = 2.5V; VDDO = 2.5V
			-75		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-107		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-133		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-152		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
			-157		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
	Noise floor		-158		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2			-157		dBc/Hz	@5MHz, VDD = 3.3V, VDDO = 3.3V
2			-71		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-103		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-130		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-151		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-158		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-160		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-159		dBc/Hz	@5MHz, VDD = 2.5V; VDDO = 2.5V

^{*} Values are over Recommended Operating Conditions

Table 22 LVDS Output Phase Noise with 25 MHz XTAL

	Characteristics	Min.	Тур.	Max.	Units	Notes
1	Jitter RMS in 12kHz to 5MHza band		178		fs	VDD = 3.3V, VDDO = 3.3V
'	Sitter Kivis in 12km2 to Sivinza band		190		fs	VDD = 2.5V; VDDO = 2.5V
			-75		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-107		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-133		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-154		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
			-161		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-161		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2	Noise floor		-160		dBc/Hz	@5MHz, VDD = 3.3V, VDDO = 3.3V
	Noise noor		-68		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-103		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-130		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-152		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-161		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-160		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-159		dBc/Hz	@5MHz, VDD = 2.5V; VDDO = 2.5V

^{*} Values are over Recommended Operating Conditions

Table 23 HCSL Output Phase Noise with 25 MHz XTAL

	Characteristics	Min.	Тур.	Max.	Units	Notes
1	Jitter RMS in 12kHz to 20MHz band		269		fs	VDD = 3.3V, VDDO = 3.3V
'	Sitter KWS III 12KH2 to 20WH2 barid		228		fs	VDD = 2.5V; VDDO = 2.5V
			-76		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-107		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-133		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-152		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
			-157		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-157		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2	Noise floor		-157		dBc/Hz	@5MHz, VDD = 3.3V, VDDO = 3.3V
2	Noise floor		-73		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-105		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-131		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-151		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-158		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-159		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-159		dBc/Hz	@5MHz, VDD = 2.5V; VDDO = 2.5V

^{*} Values are over Recommended Operating Conditions

Table 24 LVCMOS Output Phase Noise with 125 MHz XTAL*

	Characteristics	Min.	Тур.	Max.	Units	Notes
1	Jitter RMS in 12kHz to 20MHz		92		fs	VDD = 3.3V, VDDO = 3.3V
'	band		105		fs	VDD = 2.5V; VDDO = 2.5V
			-58		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-90		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-118		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-136		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
			-150		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-158		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2	Noise floor		-159		dBc/Hz	@10MHz, VDD = 3.3V, VDDO = 3.3V
2	Noise iloui		-53		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-86		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-113		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-134		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-148		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-157		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-158		dBc/Hz	@10MHz, VDD = 2.5V; VDDO = 2.5V

^{*} Values are over Recommended Operating Conditions

Table 25 LVPECL Output Phase Noise with 125 MHz XTAL*

	Characteristics	Min.	Тур.	Max.	Units	Notes
	Jitter RMS in 12kHz to 20MHz		76		fs	VDD = 3.3V, VDDO = 3.3V
1	band		86		fs	VDD = 2.5V; VDDO = 2.5V
			-58		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-90		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-118		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-140		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
	Noise floor		-154		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-159		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2			-161		dBc/Hz	@10MHz, VDD = 3.3V, VDDO = 3.3V
	Noise nooi		-54		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-86		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-114		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-137		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-152		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-158		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-160		dBc/Hz	@10MHz, VDD = 2.5V; VDDO = 2.5V

^{*} Values are over Recommended Operating Conditions

Table 26 LVDS Output Phase Noise with 125 MHz XTAL

	Characteristics	Min.	Тур.	Max.	Units	Notes
1	Jitter RMS in 12kHz to 20MHz		98		fs	VDD = 3.3V, VDDO = 3.3V
'	band		100		fs	VDD = 2.5V; VDDO = 2.5V
			-57		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-90		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-118		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-140		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
	Noise floor		-152		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-157		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2			-158		dBc/Hz	@10MHz, VDD = 3.3V, VDDO = 3.3V
	Noise nooi		-54		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-86		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-114		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-137		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-153		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-157		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-158		dBc/Hz	@10MHz, VDD = 2.5V; VDDO = 2.5V

^{*} Values are over Recommended Operating Conditions

Table 27 HCSL Output Phase Noise with 125 MHz XTAL

	Characteristics	Min.	Тур.	Max.	Units	Notes
1	Jitter RMS in 12kHz to 20MHz		83		fs	VDD = 3.3V, VDDO = 3.3V
'	band		85		fs	VDD = 2.5V; VDDO = 2.5V
			-58		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-90		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-118		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-140		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
	Nitro finan		-152		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-158		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2			-160		dBc/Hz	@10MHz, VDD = 3.3V, VDDO = 3.3V
	Noise floor		-54		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-86		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-114		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-137		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-153		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-158		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-159		dBc/Hz	@10MHz, VDD = 2.5V; VDDO = 2.5V

^{*} Values are over Recommended Operating Conditions

Table 28 LVCMOS Output Phase Noise with 156.25 MHz XTAL*

	Characteristics	Min.	Тур.	Max.	Units	Notes
1	Jitter RMS in 12kHz to 20MHz		79		fs	VDD = 3.3V, VDDO = 3.3V
'	band		88		fs	VDD = 2.5V; VDDO = 2.5V
			-53		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-81		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-111		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-135		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
			-149		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-157		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
_	Noise floor		-159		dBc/Hz	@10MHz, VDD = 3.3V, VDDO = 3.3V
2	Noise noor		-53		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-82		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-113		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-135		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-148		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-156		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-158		dBc/Hz	@10MHz, VDD = 2.5V; VDDO = 2.5V

^{*} Values are over Recommended Operating Conditions

Table 29 LVPECL Output Phase Noise with 156.25 MHz XTAL*

	Characteristics	Min.	Тур.	Max.	Units	Notes
1	Jitter RMS in 12kHz to 20MHz		61		fs	VDD = 3.3V, VDDO = 3.3V
1	band		68		fs	VDD = 2.5V; VDDO = 2.5V
			-52		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-80		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
		-111		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V	
			-140		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
			-153		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
	Noise floor		-159		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2			-161		dBc/Hz	@10MHz, VDD = 3.3V, VDDO = 3.3V
			-53		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-81		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-114		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-140		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-151		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-158		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-160		dBc/Hz	@10MHz, VDD = 2.5V; VDDO = 2.5V

^{*} Values are over Recommended Operating Conditions

Table 30 LVDS Output Phase Noise with 156.25 MHz XTAL

	Characteristics	Min.	Тур.	Max.	Units	Notes
1	Jitter RMS in 12kHz to 20MHz		79		fs	VDD = 3.3V, VDDO = 3.3V
'	band		76		fs	VDD = 2.5V; VDDO = 2.5V
			-52		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-81		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-111		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-138		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
			-148		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-157		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2	Noise floor		-159		dBc/Hz	@10MHz, VDD = 3.3V, VDDO = 3.3V
-	Noise illooi		-52		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-82		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-113		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-140		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-151		dBc/Hz @10	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-157		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-159		dBc/Hz	@10MHz, VDD = 2.5V; VDDO = 2.5V

^{*} Values are over Recommended Operating Conditions

Table 31 HCSL Output Phase Noise with 156.25 MHz XTAL

	Characteristics	Min.	Тур.	Max.	Units	Notes
1	Jitter RMS in 12kHz to 20MHz band		72		fs	VDD = 3.3V, VDDO = 3.3V
'			72		fs	VDD = 2.5V; VDDO = 2.5V
			-53		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-86		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
	Noise floor		-114		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-139		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
			-148		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-157		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2			-160		dBc/Hz	@10MHz, VDD = 3.3V, VDDO = 3.3V
			-53		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-86		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-115		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-140		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-151		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-157		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-160		dBc/Hz	@10MHz, VDD = 2.5V; VDDO = 2.5V

^{*} Values are over Recommended Operating Conditions

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes	
1	sck period	tcyc	124			ns		
2	sck pulse width low	tclkl	62			ns		
3	sck pulse width high	tclkh	62			ns	See Figure 46& Figure 47	
4	si setup (write) from sck rising edge	trxs	10			ns		
5	si hold (write) from sck falling edge	trxh	10			ns		
6	so delay (read) from sck falling edge	txd			25	ns		
7	cs_b to output high impedance	tohz			60	ns		
8	cs_b setup from sck falling edge (LSB first)	tcssi	20			ns	Soo Eiguro 46	
9	cs_b hold from sck falling edge (LSB first)	tcshi	10			ns	See Figure 46	
10	cs_b setup from sck falling edge (MSB first)	tcssm	20			ns	See Figure 47	
11	cs_b hold from sck falling edge (MSB first)	tcshm	10			ns	See Figure 47	

^{*} Values are over Recommended Operating Conditions

^{*} Values shown are proposed for the data sheet, these values are to be confirmed

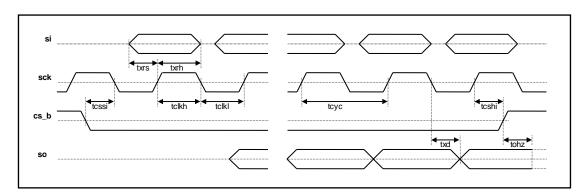


Figure 46. SPI (Serial Peripheral Interface) Timing - LSB First Mode

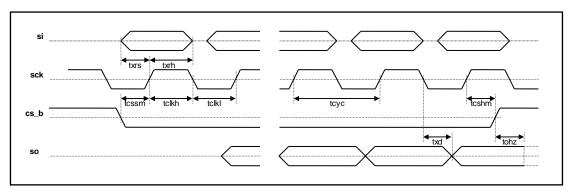


Figure 47. SPI (Serial Peripheral Interface) Timing - MSB First Mode

^{*} For LSB first mode timing diagram, refer to Figure 46

^{*} For MSB first mode timing diagram, refer to Figure 47

Table 33 6x6mm QFN Package Thermal Properties

Parameter	Symbol	Condition	Value	Units	
Maximum Ambient Temperature	T _A		85	°C	
Maximum Junction Temperature	T _{JMAX}		125	°C	
		still air	22.2	°C/W	
Junction to Ambient Thermal Resistance ⁽¹⁾ (Note 1)	θ_{JA}	1m/s airflow	17.6		
		2.5m/s airflow	15.8		
Junction to Board Thermal Resistance	θυв		7.2	°C/W	
Junction to Case Thermal Resistance	θυς		14.3	°C/W	
Junction to Pad Thermal Resistance ⁽²⁾	θЈР	Still air	3.9	°C/W	
Junction to Top-Center Thermal Characterization Parameter	Ψ_{JT}	Still air	0.2	°C/W	

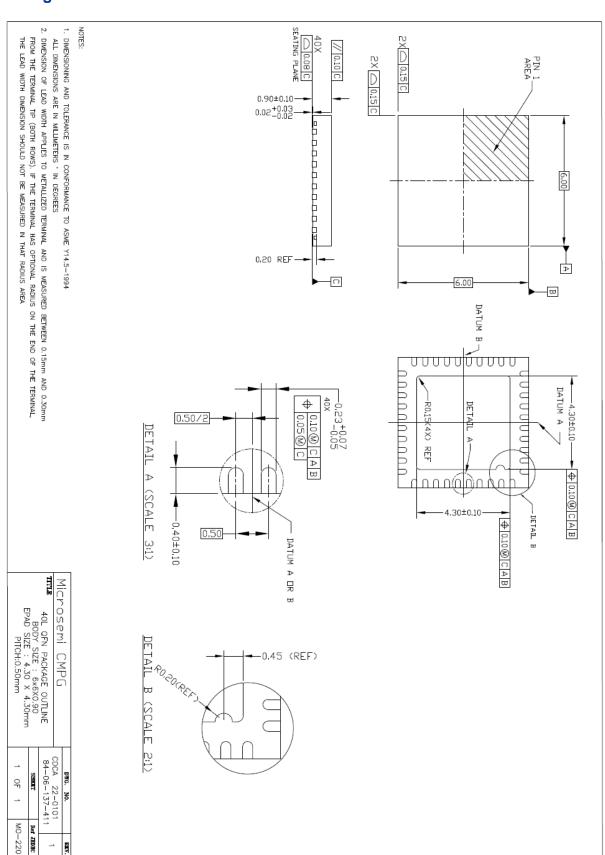
¹⁾ Theta-JA (θ_{M}) is the thermal resistance from junction to ambient when the package is mounted on an 4-layer JEDEC standard test board and dissipating maximum power

⁽²⁾ Theta-JP (θ_{JP}) is the thermal resistance from junction to the center exposed pad on the bottom of the package)

Change History

June 2017 was the first release of the document.

July 2017 release changes:


• Modified power calculation in the Power Consumption section.

August 2017 release changes:

- Modified "Input driven by HCSL output" figure.
- Modified additive jitter for 156.25MHz input clock.
- Added Figure 44 and Figure 45.

Package Outline

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support @microsemi.com

© 2017 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.