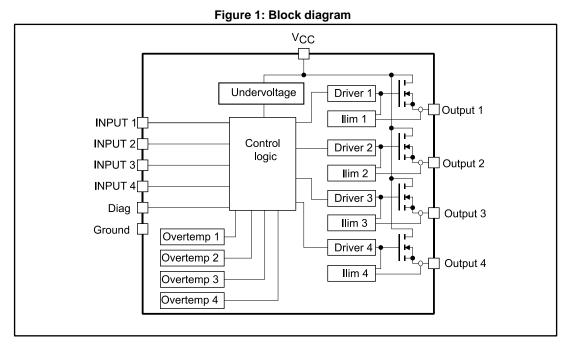
Contents

Contents

1	Block d	liagram	5
2	Pin con	nection	6
3	Maximu	ım ratings	7
4	Electric	al characteristics	8
5	Test cir	cuits	11
6	Switchi	ng time waveforms and truth table	12
7	Packag	e information	14
	7.1	PowerSO-10 package information	14
	7.2	PowerSO-10 packing information	16
8	Revisio	n history	19

List of tables

Table 1: Device summary	1
Table 2: Absolute maximum ratings	7
Table 3: Thermal data	
Table 4: Power section	8
Table 5: Switching (VCC = 24 V)	8
Table 6: Logic inputs	
Table 7: Protection and diagnostic	
Table 8: Truth table	
Table 9: PowerSO-10 package mechanical data	15
Table 10: PowerSO-10 career tape dimension mechanical data	16
Table 11: PowerSO-10 reel dimension mechanical data	
Table 12: PowerSO-10 base and bulk quantity in tape and reel	17
Table 13: Document revision history	



List of figures

Figure 1: Block diagram	5
Figure 2: Connection diagram (top view)	
Figure 3: Current and voltage conventions	
Figure 4: Avalanche energy test circuit	
Figure 5: Peak short-circuit test diagram	
Figure 6: Switching waveforms	12
Figure 7: Switching parameter test conditions	.13
Figure 8: Driving circuit	13
Figure 9: PowerSO-10 package outline	14
Figure 10: PowerSO-10 career tape outline	16
Figure 11: PowerSO-10 reel outline	17
Figure 12: PowerSO-10 suggested pad and tube shipment (no suffix)	18

1 Block diagram

57

2 Pin connection

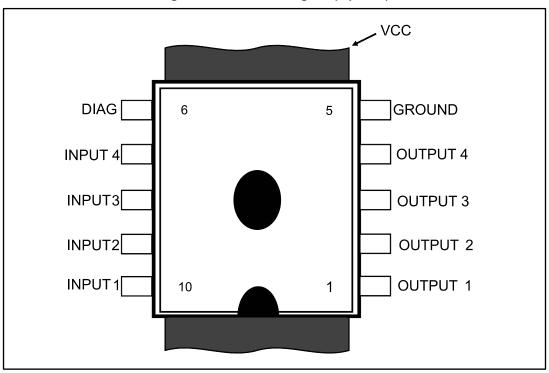
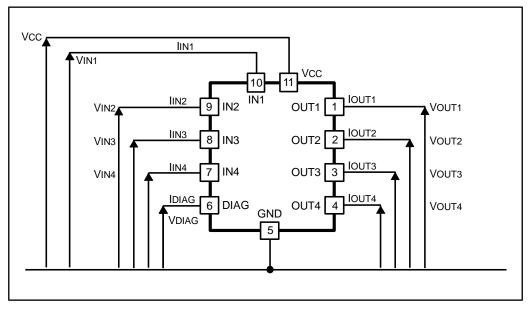



Figure 2: Connection diagram (top view)

Figure 3: Current and voltage conventions

DocID11504 Rev 4

6/20

3 Maximum ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vcc	Power supply voltage	45	V
-V _{CC}	Reverse supply voltage	-0.3	V
Іоит	Output current	Internally limited	А
IR	Reverse output current (per channel)	-6	А
l _{in}	Input current range	±10	mA
Idiag	DIAG pin current	±10	mA
V _{ESD}	Electrostatic discharge (R = 1.5 k Ω ; C = 100 pF)	2000	V
E _{AS}	Single pulse avalanche energy per channel not simultaneously	400	mJ
Ртот	Power dissipation at $T_C = 25 \text{ °C}$	Internally limited	W
TJ	Junction operating temperature	Internally limited	°C
Tstg	Storage temperature	-55 to 150	°C

Table 3: Thermal data

Symbol	Parameter		Value	Unit
R _{th(JC)}	Thermal resistance junction-case (1)	Max.	2	°C/W
Rth(JA)	Thermal resistance junction-ambient ⁽²⁾	Max.	50	°C/W

Notes:

⁽¹⁾Per channel.

 $^{(2)}\ensuremath{\mathsf{W}}\xspace{\mathsf{hensuremath{\mathsf{w}}}\xspace}$ When mounted on a four-layer FR-4, with the minimum recommended pad size.

4 Electrical characteristics

10 V < V_{CC} < 36 V; -40 $^{\circ}C$ < T_J < 125 $^{\circ}C;$ unless otherwise specified

Table 4: Power section								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
Vcc	Supply voltage		10		36	V		
		I_{OUT} = 0.5 A at T_J = 25 $^\circ C$			0.2			
R _{DS(on)}	On-state	$I_{OUT} = 0.5 \text{ A at } T_J = 85 ^\circ\text{C}$			0.32	Ω		
	resistance	louт = 0.5 A at T _J = 125 °C			0.44	Ω		
		All channels OFF			1	mA		
ls	Supply current	On-state $V_{IN} = 5 V$, $I_{OUT} = 0 V$, $T_J = -40 °C$			15	mA		
V _{demag}	Output voltage at turn-off	I _{OUT} = 0.5 A; L _{LOAD} >= 1 mH	Vcc-65	Vcc-55	Vcc-45	V		

Table 4: Power section

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
t	Turn on delay time	$I_{OUT} = 0.5$ A, resistive load, input rise time < 0.1 µs, T _J = 25 °C		30	40		
t _{d(ON)}	Turn-on delay time	$I_{OUT} = 0.5$ A, resistive load, input rise time < 0.1 µs, T _J = 125 °C			60	μs	
+	Rise time of output	$I_{OUT} = 0.5$ A, resistive load, input rise time < 0.1 µs, T _J = 25 °C		50	100		
tr current		$I_{OUT} = 0.5$ A, resistive load, input rise time < 0.1 µs, T _J = 125 °C			115	μs	
4	Turn-off delay time of	$I_{OUT} = 0.5$ A, resistive load, input rise time < 0.1 µs, T _J = 25 °C		20	30		
t _{d(OFF)}	output current	$I_{OUT} = 0.5$ A, resistive load, input rise time < 0.1 µs, T _J = 125 °C			40	μs	
	Fall time of output	$I_{OUT} = 0.5$ A, resistive load, input rise time < 0.1 µs, $T_J = 25$ °C		8	15		
tf	current	$I_{OUT} = 0.5$ A, resistive load, input rise time < 0.1 µs, T _J = 125 °C			20	μs	
(di/dt) _{on}	Turn-on current	louт = 0.5 A			0.5	A/µs	
(un atjon	slope	Iout = Ilim, Tj = 25 °C			2	Avµs	

Table 5: Switching (VCC = 24 V)

8/20

VN330SP-E

Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
(-1: (-14)	Turn-off current	IOUT = 0.5 A			2	A /u.o
(di/dt) _{off}	slope	Iout = Ilim, Tj = 25 °C			4	A/µs

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VIL	Input low level voltage				2	V
VIH	Input high level voltage		3.5			V
VI(HYST)	Input hysteresis voltage			0.5		V
lin	Input current	$V_{IN} = 0$ to 30 V			600	μA
I _{LGND}	Output current in ground disconnection	$V_{CC}=V_{INn} = GND =$ DIAG = 24 V; T _J = 25 °C			25	mA
Mari	Input clomp voltage ⁽¹⁾	l _{IN} = 1 mA	32	36		V
VICL	Input clamp voltage ⁽¹⁾	l _{IN} = -1 mA		-0.7		V

Table 6: Logic inputs

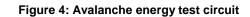
Notes:

 $^{(1)}$ The input voltage is internally clamped at 32 V minimum, the input pins can be connected to a higher voltage by an external resistor, which cannot exceed 10 mA

Electrical characteristics

Table 7: Protection and diagnostic							
Symbol Parameter Tes		Test conditions	Min.	Тур.	Max.	Unit	
Vdiag ⁽¹⁾	Status voltage output low	I _{DIAG} = 5 mA (fault condition)			1		
V _{SCL} ⁽¹⁾	Status clamp	I _{DIAG} = 1 mA	32	36		V	
V SCL ⁽¹⁾	voltage	I _{DIAG} = -1 mA		-0.7			
Vusd	Undervoltage shutdown		5		8	V	
Vol	Low state output voltage	$V_{IN} = V_{IL}; R_{LOAD} < 10 \text{ m}\Omega$			1.5	V	
I _{LIM}	DC short-circuit current	V_{CC} = 24 V; R_{LOAD} < 10 m Ω	0.7		2.5	А	
Iovpk	Peak short-circuit current	$\label{eq:VCC} \begin{array}{l} V_{CC} = 24 \ V; \ V_{IN} = 30 \ V; \\ R_{LOAD} < 10 \ m\Omega \end{array}$			4	А	
Idiagh	Leakage on DIAG pin in high state	VDIAG = 24 V			100	μA	
I _{LOAD}	Output leakage current	V_{CC} = 10 to 36 V; V_{IN} = V_{IL}			50	μA	
tsc	Delay time of current limiter				100	μs	
T _{TSD}	Thermal shutdown temperature		150	170		°C	
T _R	Thermal reset temperature		135	155		°C	

Notes:


 $^{(1)}Status$ determination > 100 μs after the switching edge.

If the INPUT pin is left floating, the corresponding channel automatically switches off. If GND pin is disconnected, the channel switches off provided that V_{CC} does not exceed 36 V.

5 Test circuits

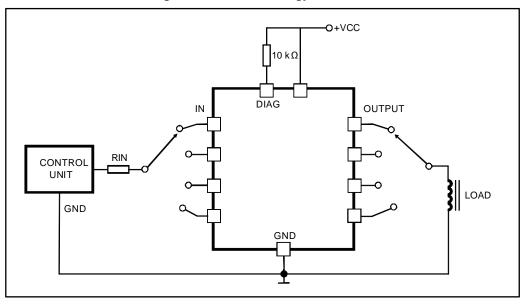
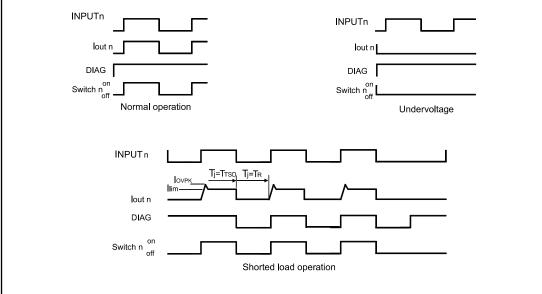


Figure 5: Peak short-circuit test diagram


57

6

Switching time waveforms and truth table

Table 8: Truth table							
Conditions	INPUTn	OUTPUTn	Diagnostic				
Normal an aration	L	L	Н				
Normal operation	н	Н	Н				
Quartemanture	L	L	Н				
Overtemperature	н	L	L				
	L	L	Н				
Undervoltage	н	L	Н				
Charted land surrent limitation	L	L	Н				
Shorted load current limitation	н	Н	Н				

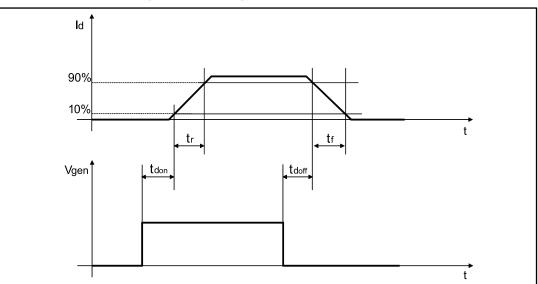
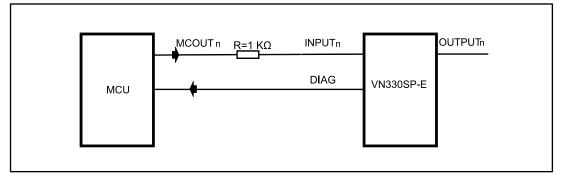



Figure 8: Driving circuit

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 PowerSO-10 package information

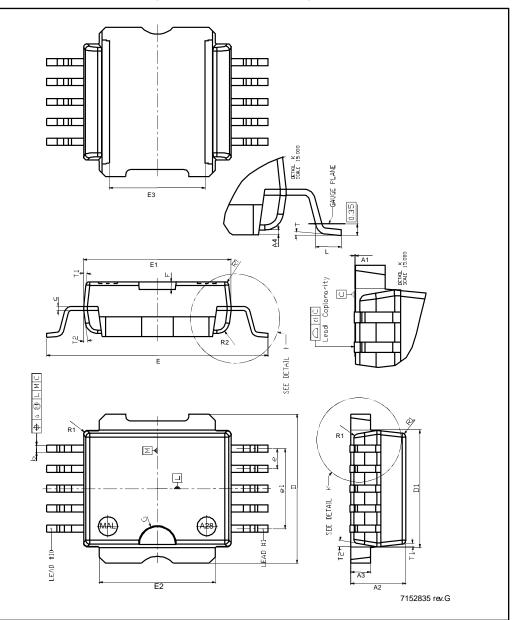
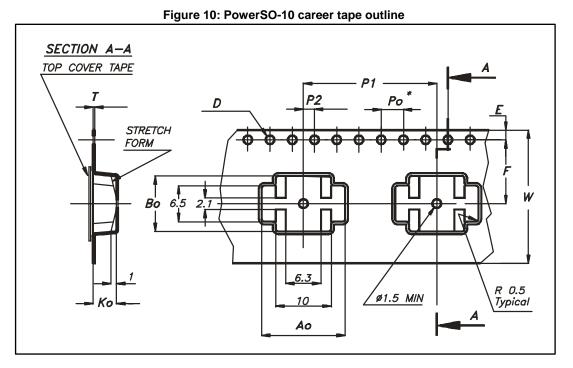


Figure 9: PowerSO-10 package outline

VN330SP-E

Package information


Table 9: PowerSO-10 package mechanical data						
Dim. mm						
Dini.	Min.	Тур.	Max.			
A1	0	0.05	0.1			
A2	3.4	3.5	3.6			
A3	1.2	1.3	1.4			
A4	0.15	0.2	0.25			
а		0.2				
b	0.37	0.45	0.53			
С	0.23	0.27	0.32			
D	9.4	9.5	9.6			
D1	7.4	7.5	7.6			
d	0	0.05	0.1			
E	13.85	14.1	14.35			
E1 ⁽¹⁾	9.3	9.4	9.5			
E2	7.3	7.4	7.5			
E3	5.9	6.1	6.3			
е		1.27				
e1		5.08				
F		0.5				
G		1.2				
L	0.8	1	1.1			
R1			0.25			
R2		0.8				
Т	2 deg	5 deg	8 deg			
T1		6 deg				
T2		10 deg				

Notes:

 $^{(1)}\mbox{Resin}$ protrusions are not included (max. value 0.15 mm per side)

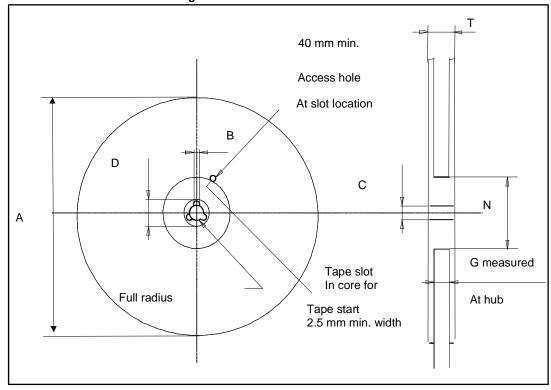
7.2 PowerSO-10 packing information

Drawing is not in scale

Table 10: PowerSO-10 career tape dimension mechanical data			
Dim.	mm		
	Min.	Тур.	Max.
A0	14.9	15.0	15.1
B0	9.9	10.0	10.1
K0	4.15	4.25	4.35
F	11.4	11.5	11.6
E	1.65	1.75	1.85
W	23.7	24.0	24.3
P2	1.9	2.0	2.1
P0	3.9	4.0	4.1
P1	23.9	24.0	24.1
Т	0.025	0.30	0.35
D(Ø)	1.50	1.55	1.60

Table 10: PowerSO-10 career tape dimension mechanical data

10 sprocket hole pitch cumulative tolerance ±0.2 mm



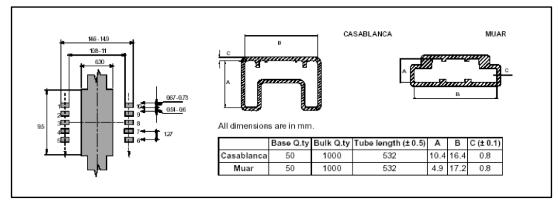
DocID11504 Rev 4

Figure 11: PowerSO-10 reel outline

Package information

Drawing is not in scale

Dim.	mm		
	Min.	Тур.	Max.
A			330
В	1.5		
С	12.8	13	13.2
D	20.2		
Ν	60		
G	23.7	24.4	
Т			30.4


Table 12: PowerSO-10 base and bulk of	quantity in tape and reel
---------------------------------------	---------------------------

Base quantity	Bulk quantity	
600	600	

Package information

10 sprocket hole pitch cumulative tolerance ±0.2 mm

8 Revision history

Table 13: Document revision history

Date	Revision	Changes
06-Sep-2005	1	Initial release.
31-Oct-2006	2	Typo in electrical characteristics temperature conditions updated <i>on page 5</i>
27-Mar-2007	3	Document reformatted, typo in Note 1 on page 6
14-Feb-2017	4	Updated Table 4: "Power section". Inserted Figure 12: "PowerSO-10 suggested pad and tube shipment (no suffix)".

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

