
PIN CONNECTIONS

Pin No.	Pin Name
1	INPUT
2	GND
3	Power Save
4	OUTPUT
5	GND
6	Vcc

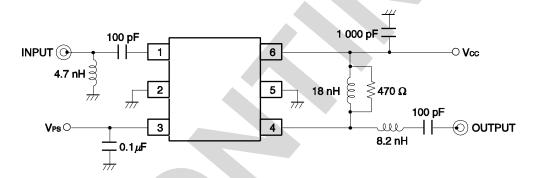
INTERNAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Test Conditions	Ratings	Unit
Supply Voltage	Vcc	TA = +25°C	4.0	V
Power-Saving Voltage	V _{PS}	TA = +25°C	4.0	V
Power Dissipation	Po	$T_A = +85^{\circ}C$ Note	232	mW
Operating Ambient Temperature	TA		-40 to +85	°C
Storage Temperature	Tstg		-55 to +150	°C
Input Power	Pin		+10	dBm

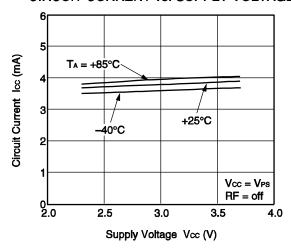
Note Mounted on double-side copper-clad $50 \times 50 \times 1.6$ mm epoxy glass PWB

RECOMMENDED OPERATING RANGE

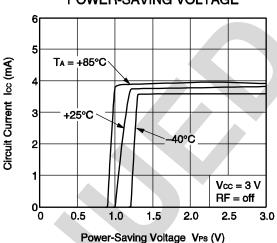

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc	2.7	3.0	3.3	V
Operating Ambient Temperature	TA	-40	+25	+85	°C
Power Save Turn-on Voltage	VPSon	1.6	-	Vcc	V
Power Save Turn-off Voltage	V _{PSoff}	0	-	0.4	V

ELECTRICAL CHARACTERISTICS

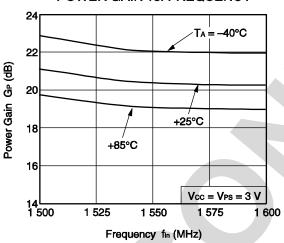
(TA = +25°C, Vcc = VPS = 3.0 V, fin = 1 575 MHz, unless otherwise specified)

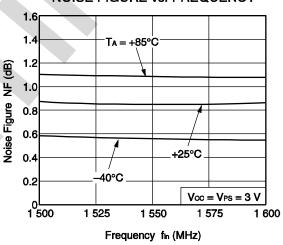

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	Icc	No Signal (VPS = 3.0 V)	2.8	3.8	5.1	mA
		At Power-Saving Mode (VPS = 0 V)	-	-	1	μΑ
Power Gain	G₽	Pin = -35 dBm	17.5	20	22.5	dB
Noise Figure	NF		1	0.8	1.1	dB
Input 3rd Order Distortion Intercept Point	IIP ₃	fin1 = 1 574 MHz, fin2 = 1 575 MHz	-	-10	-	dBm
Input Return Loss	RLin		7	10	-	dB
Output Return Loss	RLout		10	18	_	dB
Isolation	ISL		1	35	ı	dB
Gain 1 dB Compression Input Power	Pin (1 dB)			-22	_	dBm

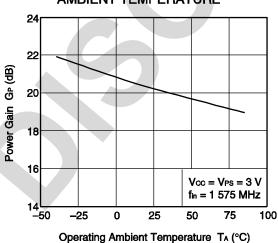
TEST CIRCUIT

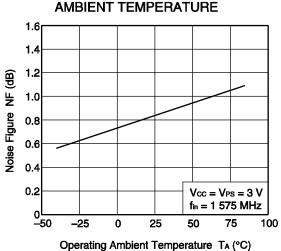


TYPICAL CHARACTERISTICS (T_A = +25°C, unless otherwise specified)


CIRCUIT CURRENT vs. SUPPLY VOLTAGE


CIRCUIT CURRENT vs. POWER-SAVING VOLTAGE

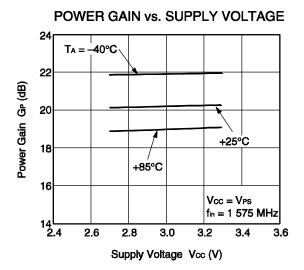

POWER GAIN vs. FREQUENCY

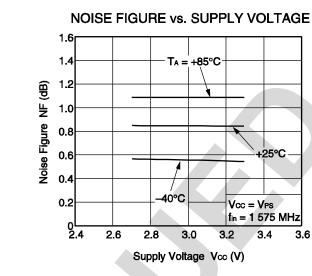

NOISE FIGURE vs. FREQUENCY

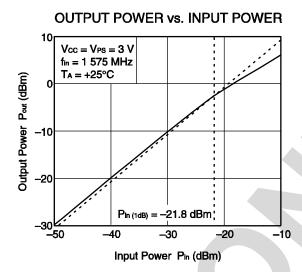
POWER GAIN vs. OPERATING AMBIENT TEMPERATURE

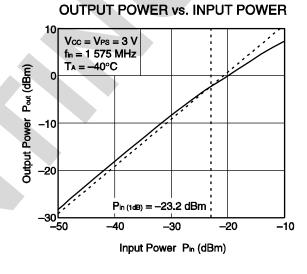
NOISE FIGURE vs. OPERATING

 $\textbf{Remark} \quad \text{The graphs indicate nominal characteristics}.$

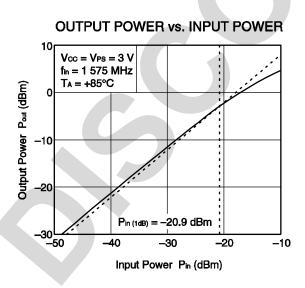

25°C

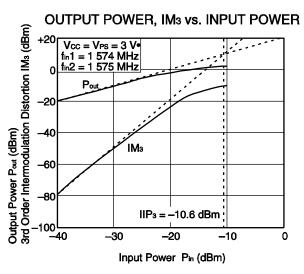

Vcc = Vps


3.2


fin = 1 575 MHz

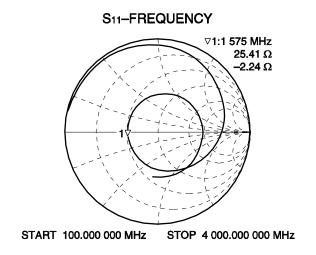
3.4

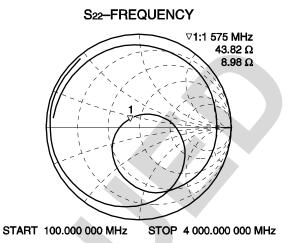


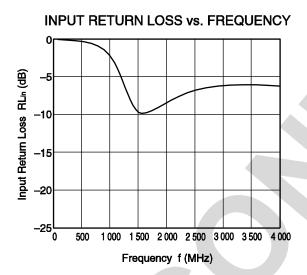


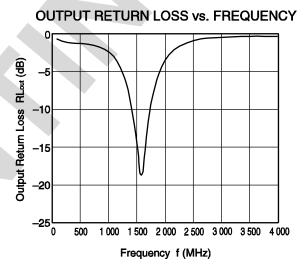
40°C

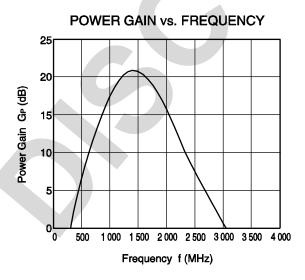
3.0

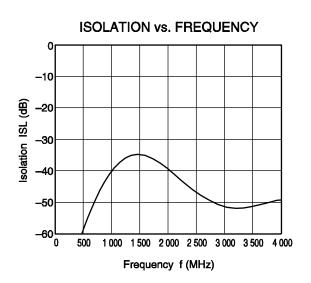

+85°C

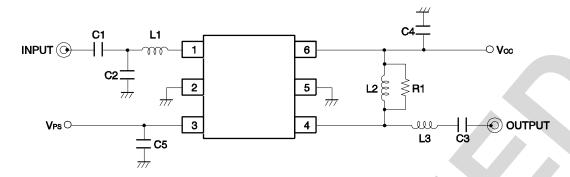





Remark The graphs indicate nominal characteristics.


S-PARAMETERS (TA = +25°C, Vcc = VPS = 3.0 V, monitored at connector on board)

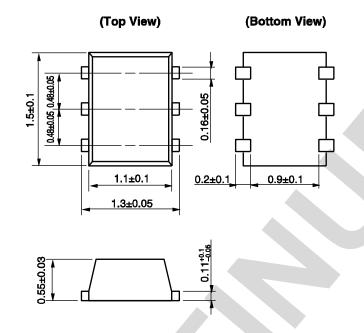




Remark The graphs indicate nominal characteristics.

APPLIED CIRCUIT EXAMPLE

EXTERNAL PARTS CHART


Symbol Parts	Value					
	1.575 GHz Band	1.9 GHz Band	2.14 GHz Band	2.4 GHz Band	Unit	
L1	Chip Inductor	5.6	3.9	3.3	2.7	nH
L2	Chip Inductor	18	12	8.2	6.8	nΗ
L3	Chip Inductor	10	8.2	6.8	5.6	nΗ
C1	Chip Capacitor	120	5.0	2.0	2.0	pF
C2	Chip Capacitor	1.3	0.7	0.5	0.3	pF
C3	Chip Capacitor	120	5.0	5.0	5.0	pF
C4	Chip Capacitor	1 000	1 000	1 000	1 000	pF
C5	Chip Capacitor	1 000	1 000	1 000	1 000	pF
R1	Chip Resistor	470	470	470	470	Ω

TYPICAL CHARACTERISTICS (TA = +25°C, Vcc = Vps = 3.0 V, unless otherwise specified)

Davamatas	Symbol	Reference Value				l lait
Parameter		1.575 GHz	1.9 GHz	2.14 GHz	2.4 GHz	Unit
Power Gain	G₽	20.0	19.0	18.0	17.0	dB
Noise Figure	NF	0.78	0.95	1.10	1.27	dB
Input Return Loss	RLin	10.4	10.2	10.2	10.5	dB
Output Return Loss	RLout	21.0	30.0	32.2	23.0	dB

PACKAGE DIMENSIONS

6-PIN LEAD-LESS MINIMOLD (1511 PKG) (UNIT: mm)

NOTES ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation). All the ground terminals must be connected together with wide ground pattern to decrease impedance difference.
- (3) The bypass capacitor should be attached to Vcc line.
- (4) Do not supply DC voltage to INPUT pin.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (terminal temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	H\$350

Caution Do not use different soldering methods together (except for partial heating).