
Ordering Information

Part Number		Junction			
Standard	Pb-Free	Temp. Range	Package		
LM2574BN	LM2574YN	-40°C to +85°C	8-pin Plastic DIP		
LM2574-3.3BN	LM2574-3.3YN	–40°C to +85°C	8-pin Plastic DIP		
LM2574-5.0BN	LM2574-5.0YN	-40°C to +85°C	8-pin Plastic DIP		

Pin Configuration

Operating Ratings ⁽¹⁾
Supply Voltage
LM257440V
Temperature Range
LM2574 40° C \leq T _J \leq +125 $^{\circ}$ C
Maximum Junction Temperature (T _J 150°C

Electrical Characteristics⁽²⁾

Specifications with standard typeface are for T_J = 25°C, and those with boldface type apply over full Operating Temperature Range. Unless otherwise specified, V_{IN} = 12V, and $I_{I,OAD}$ = 100mA.

Symbol	Parameter	Condition	Min	Тур	Max	Units
System Par	ameters, Adjustable Regulators ⁽³⁾ , Te	st Circuit <i>Figur</i> e 2				
V_{OUT}	Feedback Voltage	V _{IN} = 12V, I _{LOAD} = 0.1A, V _{OUT} = 5V	1.217	1.230	1.243	V
V _{OUT}	Feedback Voltage (LM2574)	$0.1A \le I_{LOAD} \le 0.5A, 7V \le V_{IN} \le 40V,$ $V_{OUT} = 5V$	1.193 1.180	1.230	1.267 1.280	V
η	Efficiency	V _{IN} = 12V, I _{LOAD} = 0.1A, V _{OUT} = 5V		78		%
System Par	ameters, 3.3V Regulators (3), Test Circu	uit <i>Figur</i> e 3				
V _{OUT}	Output Voltage	V _{IN} = 12V, I _{LOAD} = 0.1A, V _{OUT} = 3.3V	3.234	3.3	3.366	V
V _{OUT}	Output Voltage (LM2574-3.3)	$0.1A \le I_{LOAD} \le 0.5A, 4.75V \le V_{IN} \le 40V,$ $V_{OUT} = 3.3V$	3.168 3.135	3.3	3.432 3.465	V V
η	Efficiency	V _{IN} = 12V, I _{LOAD} = 0.1A		73		%
System Par	ameters, 5V Regulators (3), Test Circuit	Figure 3	•			
V_{OUT}	Output Voltage	V _{IN} = 12V, I _{LOAD} = 0.1A, V _{OUT} = 5V	4.900	5.0	5.100	V
V _{OUT}	Output Voltage (LM2574-5.0)	$0.1A \le I_{LOAD} \le 0.5A, 7V \le V_{IN} \le 40V,$ $V_{OUT} = 5V$	4.800 4.750	5.0	5.200 5.250	V
η	Efficiency	V _{IN} = 12V, I _{LOAD} = 0.1A, V _{OUT} = 5V		78		%

Notes:

- 1. "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. "Operating Ratings" indicate for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see "Electrical Characteristics."
- 2. All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits are 100% production tested. All limits at temperature extremes are guaranteed via testing.
- 3. External components such as the catch diode, inductor, input and output capacitors can affect switching regulator system performance. When the LM2574 is used as shown in Figure 1 test circuit, system performance will be shown in system parameters section of "Electrical Characteristics."

Electrical Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units
Device Par	ameters, Adjustable Regulator	•				
I _B	Feedback Bias Current	V _{OUT} = 5V		50	100 500	nA nA
Device Par	ameters, Fixed and Adjustable Re	gulators	I			
f _o	Oscillator Frequency	Note 8	47 42	52	58 63	kHz kHz
V_{SAT}	Saturation Voltage	I _{OUT} = 0.5A ⁽⁴⁾		0.8	1.2 1.4	V
DC	Max Duty Cycle (ON)	Note 5	93	98		%
I _{CL}	Current Limit	Peak Current, t _{ON} ≤ 3μs ⁽⁴⁾	0.7 0.65	1.0	1.6 1.8	А
I _L	Output Leakage Current	V _{IN} , Note 6 , Output = 0V Note 6 , Output = -1V		7.5	2 30	mA
I_Q	Quiescent Current	Note 6		5	10	mA
I _{STBY}	Standby Quiescent Current	ON/OFF Pin = 5V (OFF)		50	200	μA
θ_{JA}	Thermal Resistance	N Package, Junction to Ambient ⁽⁷⁾		85		°C/W
On/Off Cor	ntrol, Fixed and Adjustable Regula	tors Test Circuit Figures 2, 3		•	•	
V _{IH}	ON/OFF Input Level	V _{OUT} = 0V	2.2 2.4	1.4		V
$V_{\rm IL}$	ON/OFF Input Level	V _{OUT} = 5V		1.2	1.0 0.8	V
I _{IH}	ON/OFF Logic Current	ON/OFF = 5V (OFF)		4	30	μA
$I_{\rm IL}$	ON/OFF Logic Current	ON/OFF = 0V (ON)		0.01	10	μΑ

Notes:

- 4. Output (pin 2) sourcing current. No diode, inductor, or capacitor connected to input.
- 5. Feedback (pin 4) removed from output and connected to 0V.
- 6. Feedback (pin 4) removed from output and connected to 12V to force the output transistor OFF.
- 7. Junction-to-ambient thermal resistance with approximately 1 square inches of PC board copper surrounding the leads.

Test Circuit

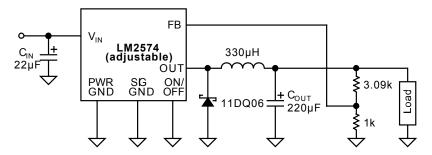
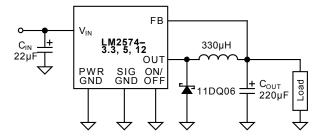
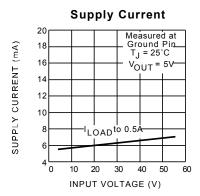
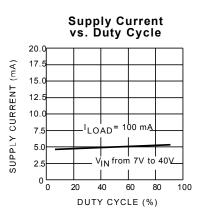
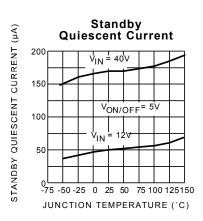
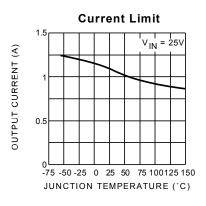
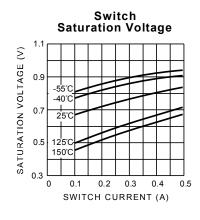
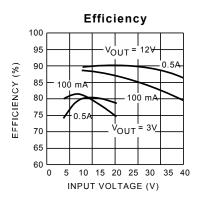


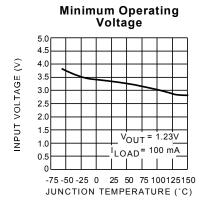
Figure 2. Adjustable Regulator Test Circuit

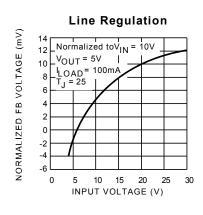





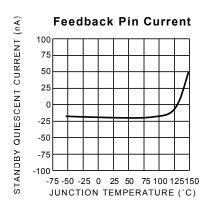

Figure 3. Fixed Regulator Test Circuit

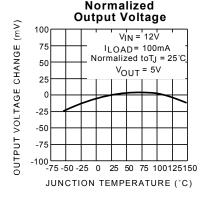

Typical Characteristics (Circuit of Figure 1)

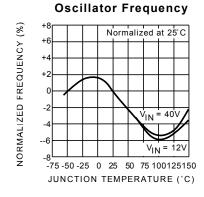


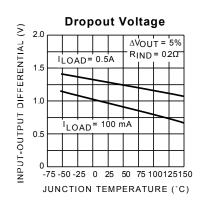


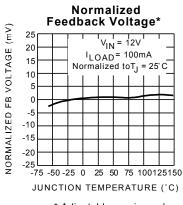


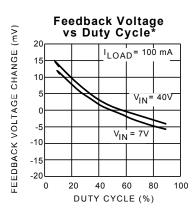


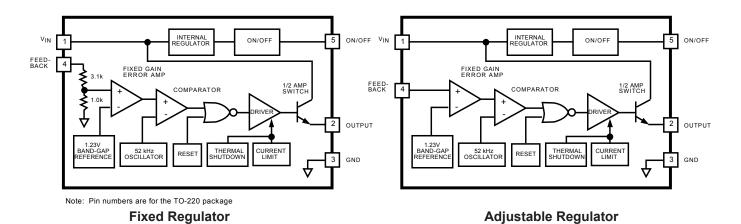




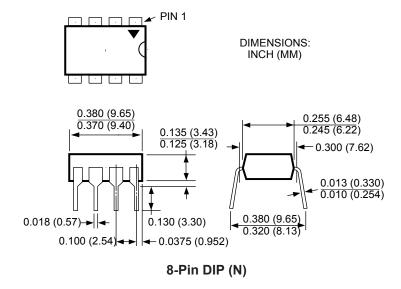








Typical Performance Characteristics (continued)



Block Diagrams

Package Information

MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2003 Micrel, Inc.