

PIN CONFIGURATIONS (1Mx8)

48-pin mini BGA (B) (6mm x 8mm)

44-Pin TSOP (Type II)

PIN DESCRIPTIONS

A0-A19	Address Inputs
CS1	Chip Enable 1 Input
CS2	Chip Enable 2 Input
ŌE	Output Enable Input
WE	Write Enable Input
I/O0-I/O7	Input/Output
NC	No Connection
Vdd	Power
Vss	Ground

IS62WV10248EALL/BLL IS65WV10248EALL/BLL

FUNCTION DESCRIPTION

SRAM is one of random access memories. Each byte has an address and can be accessed randomly. SRAM has three different modes supported. Each function is described below with Truth Table.

STANDBY MODE

Device enters standby mode when deselected ($\overline{CS1}$ HIGH or CS2 LOW). The input and output pins (I/O0-7) are placed in a high impedance state. The current consumption in this mode will be either ISB1 or ISB2 depending on the input level. CMOS input in this mode will maximize saving power.

WRITE MODE

Write operation issues with Chip selected ($\overline{\text{CS1}}$ LOW and CS2 HIGH) and Write Enable ($\overline{\text{WE}}$) input LOW. The input and output pins(I/O0-7) are in data input mode. Output buffers are closed during this time even if $\overline{\text{OE}}$ is LOW.

READ MODE

Read operation issues with Chip selected ($\overline{CS1}$ LOW and CS2 HIGH) and Write Enable (\overline{WE}) input HIGH. When \overline{OE} is LOW, output buffer turns on to make data output. Any input to I/O pins during READ mode is not permitted.

In the READ mode, output buffers can be turned off by pulling $\overline{\text{OE}}$ HIGH. In this mode, internal device operates as READ but I/Os are in a high impedance state. Since device is in READ mode, active current is used.

TRUTH TABLE

Mode	WE	CS1	CS2	ŌĒ	I/O Operation	VDD Current		
Not Selected	Х	Н	Х	Х	High-Z	ISB1, ISB2		
(Power-down)	Х	Х	L	Х	High-Z	ISB1, ISB2		
Output Disabled	Н	L	Н	Н	High-Z	Icc		
Read	Н	L	Н	L	Dout	Icc		
Write	L	L	Н	Х	Din	Icc		

ABSOLUTE MAXIMUM RATINGS AND OPERATING RANGE

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
Vterm	Terminal Voltage with Respect to GND	-0.2 to +3.9(V _{DD} +0.3V)	V
tBIAS	Temperature Under Bias	-55 to +125	°C
V_{DD}	V _{DD} Related to GND	-0.2 to +3.9(V _{DD} +0.3V)	V
tStg	Storage Temperature	-65 to +150	°C
I _{OUT}	DC Output Current (LOW)	20	mA

Notes:

Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE(1)

Range	Device Marking	Ambient Temperature	VDD(min)	VDD(typ)	VDD(max)
Commercial	IS62WV10248EALL	0°C to +70°C	1.65V	1.8V	2.2V
Industrial	IS62WV10248EALL	-40°C to +85°C	1.65V	1.8V	2.2V
Automotive	IS65WV10248EALL	-40°C to +125°C	1.65V	1.8V	2.2V
Commercial	IS62WV10248EBLL	0°C to +70°C	2.2V	3.3V	3.6V
Industrial	IS62WV10248EBLL	-40°C to +85°C	2.2V	3.3V	3.6V
Automotive	IS65WV10248EBLL	-40°C to +125°C	2.2V	3.3V	3.6V

Note:

PIN CAPACITANCE (1)

1 117 0711 71011711102						
Parameter	Symbol	Test Condition	Max	Units		
Input capacitance	C _{IN}	T 25°C f 4 MHz // // (tim)	10	pF		
DQ capacitance (IO0–IO7)	C _{I/O}	$T_A = 25$ °C, $f = 1$ MHz, $V_{DD} = V_{DD}(typ)$	10	pF		

Note:

THERMAL CHARACTERISTICS (1)

Parameter	Symbol	Rating	Units
Thermal resistance from junction to ambient (airflow = 1m/s)	$R_{\theta JA}$	43.22	°C/W
Thermal resistance from junction to case	$R_{ heta JC}$	13.35	°C/W

^{1.} Full device AC operation assumes a 100 µs ramp time from 0 to Vcc(min) and 200 µs wait time after Vcc stabilization.

^{1.} These parameters are guaranteed by design and tested by a sample basis only.

^{1.} These parameters are guaranteed by design and tested by a sample basis only.

ELECTRICAL CHARACTERISTICS

IS62(5)WV10248EALL DC ELECTRICAL CHARACTERISTICS-I (OVER THE OPERATING RANGE)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -0.1 mA	1.4	_	V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	_	0.2	V
V _{IH} ⁽¹⁾	Input HIGH Voltage		1.4	V _{DD} + 0.2	V
V _{IL} ⁽¹⁾	Input LOW Voltage		-0.2	0.4	V
I _{LI}	Input Leakage	GND < V _{IN} < V _{DD}	-1	1	μA
I _{LO}	Output Leakage	GND < V _{IN} < V _{DD} , Output Disabled	-1	1	μΑ

Notes:

IS62(5)WV10248EBLL DC ELECTRICAL CHARACTERISTICS-I (OVER THE OPERATING RANGE)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$2.2 \le V_{DD} < 2.7$, $I_{OH} = -0.1$ mA	2.0		V
		$2.7 \le V_{DD} \le 3.6$, $I_{OH} = -1.0 \text{ mA}$	2.4	_	V
V _{OL}	Output LOW Voltage	$2.2 \le V_{DD} < 2.7$, $I_{OL} = 0.1$ mA	_	0.4	V
		$2.7 \le V_{DD} \le 3.6$, $I_{OL} = 2.1 \text{ mA}$	_	0.4	V
V _{IH} ⁽¹⁾	Input HIGH Voltage	2.2 ≤ V _{DD} < 2.7	1.8	$V_{DD} + 0.3$	V
		$2.7 \le V_{DD} \le 3.6$	2.2	$V_{DD} + 0.3$	V
$V_{\rm IL}^{(1)}$	Input LOW Voltage	$2.2 \le V_{DD} < 2.7$	-0.3	0.6	V
		$2.7 \le V_{DD} \le 3.6$	-0.3	0.8	V
ILI	Input Leakage	$GND < V_{IN} < V_{DD}$	-1	1	μΑ
I _{LO}	Output Leakage	GND < V _{IN} < V _{DD} , Output Disabled	-1	1	μΑ

VILL(min) = -1.0V AC (pulse width < 10ns). Not 100% tested.
 VIHH (max) = VDD + 1.0V AC (pulse width < 10ns). Not 100% tested.

VILL(min) = -2.0V AC (pulse width < 10ns). Not 100% tested.
 VIHH (max) = VDD + 2.0V AC (pulse width < 10ns). Not 100% tested.

IS62WV10248EALL/BLL IS65WV10248EALL/BLL

IS62(5)WV10248EALL DC ELECTRICAL CHARACTERISTICS-II FOR POWER (OVER THE OPERATING RANGE)

Symbol	Parameter	Test Conditions	Gra	ade	Тур.	Max.	Unit
ICC	V _{DD} Dynamic	$V_{DD}=V_{DD}(max)$, $I_{OUT}=0mA$, $f=f_{MAX}$	Co	m.	-	12	mΑ
	Operating		In	d.	-	15	
	Supply Current		Au	to.	-	15	
ICC1	V _{DD} Static	$V_{DD}=V_{DD}(max)$, $I_{OUT}=0mA$, $f=0Hz$		m.	-	6	mΑ
	Operating		In	d.	-	6	
	Supply Current		Au	to.	-	6	
ISB2	CMOS Standby	$V_{DD}=V_{DD}(max),$		25°C	11.1	15	
	Current (CMOS Inputs)	(1) 0V ≤ CS2 ≤ 0.2V or	Com.	45°C	11.4	17	
		(2) $\overline{\text{CS1}} \ge \text{V}_{\text{DD}} - 0.2\text{V}, \text{CS2} \ge \text{V}_{\text{DD}} - 0.2\text{V}$		70°C	13.6	20	μΑ
				uto A1	15.1	25	
			Auto	. A3	28.4	50	

Note

IS62(5)WV10248EBLL DC ELECTRICAL CHARACTERISTICS-II FOR POWER (OVER THE OPERATING RANGE)

Symbol	Parameter	Test Conditions	Gra	ade	Тур.	Max.	Unit
ICC	V _{DD} Dynamic	$V_{DD}=V_{DD}(max)$, $I_{OUT}=0mA$, $f=f_{MAX}$	Co	m.	-	15	mΑ
	Operating		In	d.	-	15	
	Supply Current		Au	to.	-	15	
ICC1	V _{DD} Static	$V_{DD}=V_{DD}(max)$, $I_{OUT}=0mA$, $f=0Hz$	Co	m.	-	6	mΑ
	Operating		In	d.	-	6	
	Supply Current		Au	to.	-	6	
ISB2	CMOS Standby	$V_{DD}=V_{DD}(max),$		25°C	11.1	15	
	Current (CMOS Inputs)	(1) 0V ≤ CS2 ≤ 0.2V or	Com.	45°C	11.4	17	
		(2) $\overline{\text{CS1}} \ge \text{V}_{\text{DD}} - 0.2\text{V}, \text{CS2} \ge \text{V}_{\text{DD}} - 0.2\text{V}$		70°C	13.6	20	μΑ
				uto A1	15.1	25	
			Auto	. A3	28.4	50	

Note

^{1.} Typical values are measured at VDD = 1.8V and not 100% tested.

^{1.} Typical values are measured at VDD = 3.0V, and not 100% tested.

AC TEST CONDITIONS (OVER THE OPERATING RANGE)

Parameter	Symbol	Conditions	Units	
Input Rise Time	T _R	1.0	V/ns	
Input Fall Time	T _F	1.0	V/ns	
Output Timing Reference Level	V_{REF}	½ V _{TM}	V	
Output Load Conditions	Refer to Figure 1 and 2			

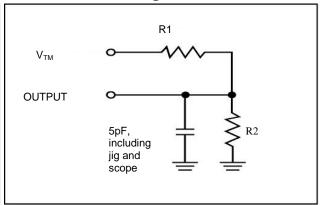

OUTPUT LOAD CONDITIONS FIGURES

Figure1

OUTPUT

30pF, including jig and scope

Figure2

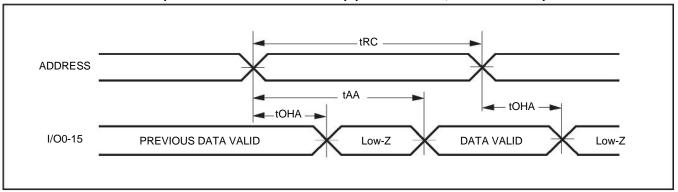
Parameters	V _{DD} =1.65~2.2V	V _{DD} =2.2~2.7V	V _{DD} =2.7~3.6V
Input Pulse Level	0.4V to VDD-0.2V	0.4V to VDD-0.3V	
R1	13500Ω	16667Ω	1103Ω
R2	10800Ω	15385Ω	1554Ω
V_{TM}	Vdd	Vdd	VDD

AC CHARACTERISTICS⁽⁶⁾ (OVER OPERATING RANGE)

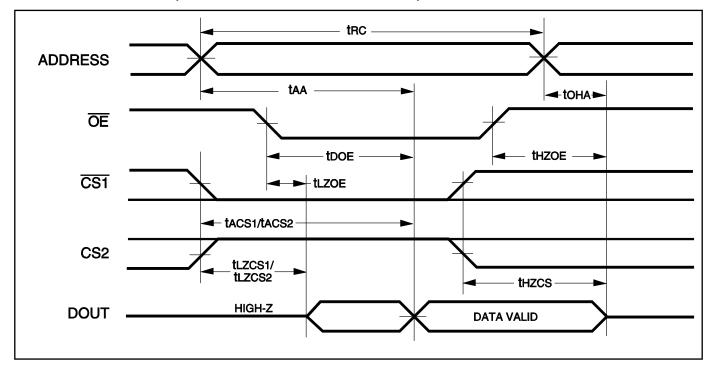
READ CYCLE AC CHARACTERISTICS

Parameter	Cymbol	45ns		55ns		mi4	notos
Parameter	Symbol	Min	Max	Min	Max	unit	notes
Read Cycle Time	tRC	45	-	55	-	ns	1,5
Address Access Time	tAA	-	45	-	55	ns	1
Output Hold Time	tOHA	8	-	8	-	ns	1
CS1, CS2 Access Time	tACS1/tACS2	-	45	-	55	ns	1
OE Access Time	tDOE	-	22	-	25	ns	1
OE to High-Z Output	tHZOE	-	18	-	18	ns	2
OE to Low-Z Output	tLZOE	5	-	5	-	ns	2
CS1, CS2 to High-Z Output	tHZCS/tHZCS2	-	18	-	18	ns	2
CS1, CS2 to Low-Z Output	tLZCS/tLZCS2	10	-	10	_	ns	2

WRITE CYCLE AC CHARACTERISTICS

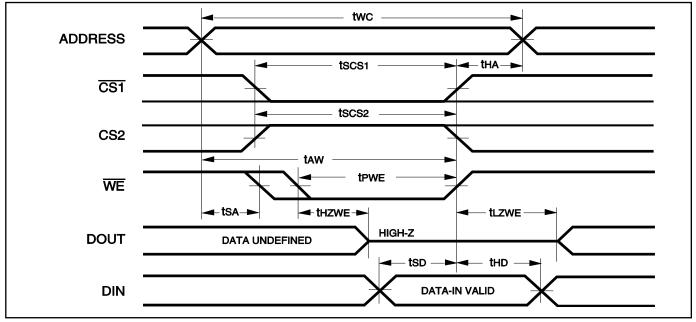

Parameter	Symbol	45ns		55ns			notos
		Min	Max	Min	Max	unit	notes
Write Cycle Time	tWC	45	-	55	-	ns	1,3,5
CS1,CS2 to Write End	tSCS1/tSCS2	35	-	40	-	ns	1,3
Address Setup Time to Write End	tAW	35	-	40	-	ns	1,3
Address Hold from Write End	tHA	0	-	0	-	ns	1,3
Address Setup Time	tSA	0	-	0	-	ns	1,3
WE Pulse Width	tPWE	35	-	40	-	ns	1,3,4
Data Setup to Write End	tSD	28	-	28	-	ns	1,3
Data Hold from Write End	tHD	0	-	0	-	ns	1,3
WE LOW to High-Z Output	tHZWE	-	18	-	18	ns	2,3
WE HIGH to Low-Z Output	tLZWE	10	-	10	-	ns	2,3

- 1. Tested with the load in Figure 1.
- 2. Tested with the load in Figure 2. tHZOE, tHZCS and tHZWE transitions are measured when the output enters a high impedance state. Not 100% tested.
- 3. The internal write time is defined by the overlap of CS1=LOW, CS2=HIGH and WE=LOW. All four conditions must be in valid states to initiate a Write, but any condition can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.
- 4. tPWE > tHZWE + tSD when OE is LOW.
- Address inputs must meet V_{IH} and V_{IL} SPEC during this period. Any glitch or unknown inputs are not permitted. Unknown input with standby mode is acceptable.
- 6. Data retention characteristics are defined later in DATA RETENTION CHARACTERISTICS.

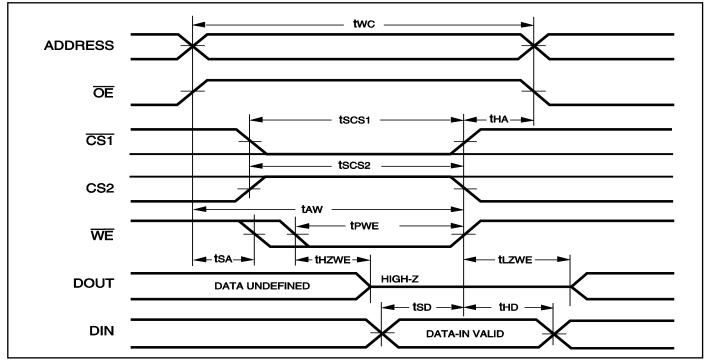


TIMING DIAGRAM

READ CYCLE NO. $1^{(1,2)}$ (ADDRESS CONTROLLED) ($\overline{CS1} = \overline{OE} = V_{IL}$, $CS2 = \overline{WE} = V_{IH}$)

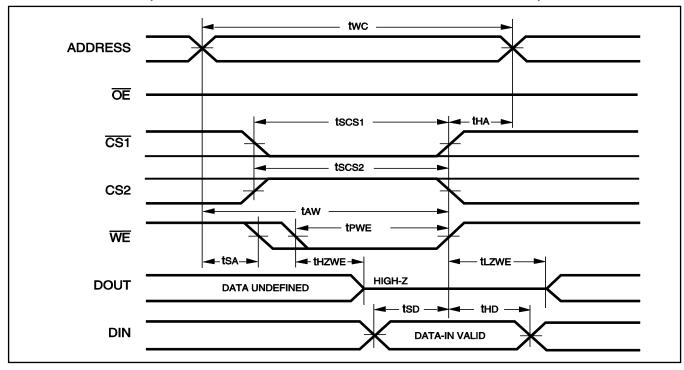

READ CYCLE NO. 2^(1,3) (CS1, CS2, AND OE CONTROLLED)

- 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , $\overline{CS1}$ = Vil. $CS2=\overline{WE}$ =VIH.
- 3. Address is valid prior to or coincident with $\overline{\text{CS1}}$ LOW and CS2 HIGH transition.


WRITE CYCLE NO. 1 ($\overline{CS1}$ CONTROLLED, \overline{OE} = HIGH OR LOW)

Notes:

- tHZWE is based on the assumption when tSA=0nS after READ operation. Actual DOUT for tHZWE may not appear if OE goes high before Write Cycle. tHZOE is the time DOUT goes to High-Z after OE goes high.
- 2. During this period the I/Os are in output state. Do not apply input signals.

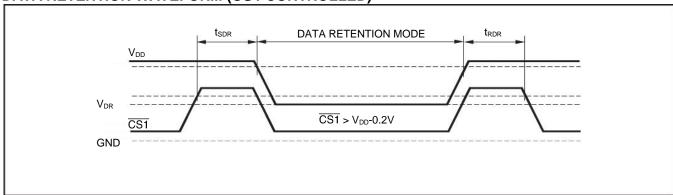

WRITE CYCLE NO. 2 (WE Controlled: OE is HIGH During Write Cycle)

- tHZWE is based on the assumption when tSA=0nS after READ operation. Actual DOUT for tHZWE may not appear if OE goes high before Write Cycle. tHZOE is the time DOUT goes to High-Z after goes high.
- 2. During this period the I/Os are in output state. Do not apply input signals

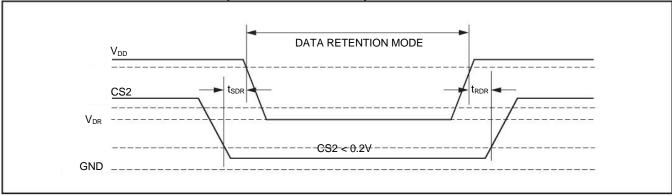
WRITE CYCLE NO. 3 (WE CONTROLLED: OE IS LOW DURING WRITE CYCLE)

Notes:

If $\overline{\text{OE}}$ is low during write cycle, tHZWE must be met in the application. Do not apply input signal during this period. Data output from the previous READ operation will drive IO BUS.



DATA RETENTION CHARACTERISTICS


Symbol	Parameter	Test Condition	OPTION	Min.	Typ. ⁽¹⁾	Max.	Unit
V_{DR}	V _{DD} for Data	See Data Retention Waveform	IS62(5)WV10248EALL	1.5		-	V
	Retention		IS62(5)WV10248EBLL	1.5		-	V
I _{DR}	Data Retention	$V_{DD} = V_{DR}(min),$	Com.	-	-	20	uA
	Current (1) $0V \le CS2 \le 0.2V$, or (2) $\overline{CS1} \ge V_{DD} - 0.2V$,	Ind.	-	-	25		
		CS2 ≥ V _{DD} - 0.2V	Auto	-	-	50	
t _{SDR}	Data Retention Setup Time	See Data Retention Waveform		0	-	-	ns
t _{RDR}	Recovery Time	See Data Retention Waveform		tRC	-	-	ns

Note

DATA RETENTION WAVEFORM (CS1 CONTROLLED)

^{1.} Typical values are measured at VDD=VDR(min), TA = 25°C and not 100% tested.

ORDERING INFORMATION IS62WV10248EALL (1.65V - 2.2V)

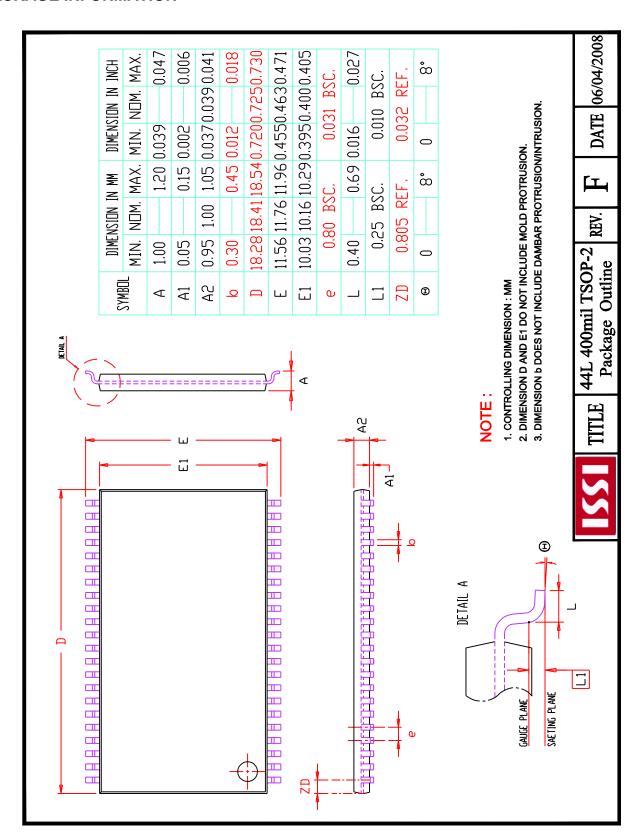
Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package	
55	IS62WV10248EALL-55TI	TSOP-II	
	IS62WV10248EALL-55TLI	TSOP-II, Lead-free	
	IS62WV10248EALL-55BI	mini BGA	
	IS62WV10248EALL-55BLI	mini BGA, Lead-free	

IS62WV10248EBLL (2.2V - 3.6V)

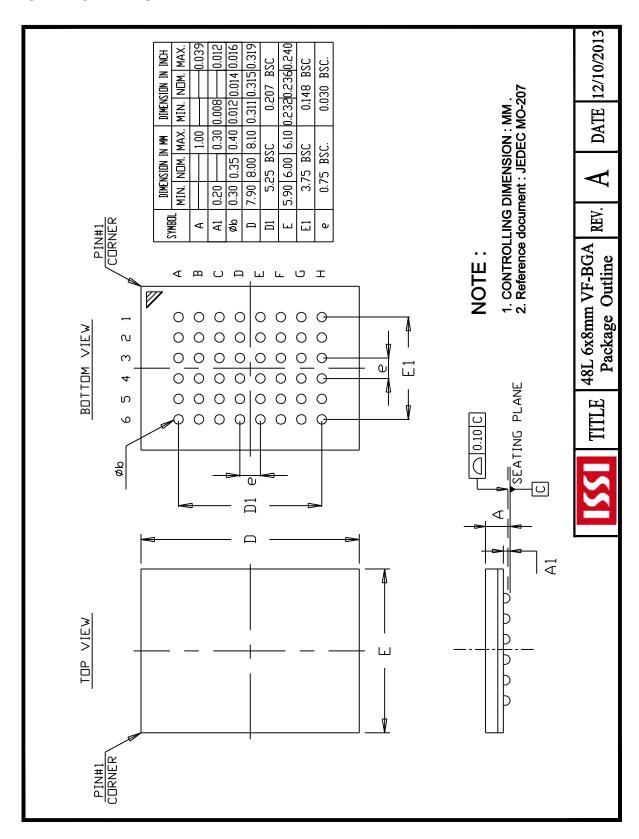
Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package	
45	IS62WV10248EBLL-45TI	TSOP-II	
	IS62WV10248EBLL-45TLI	TSOP-II, Lead-free	
	IS62WV10248EBLL-45BI	mini BGA	
	IS62WV10248EBLL-45BLI	mini BGA, Lead-free	
55	IS62WV10248EBLL-55TI	TSOP-II	
	IS62WV10248EBLL-55TLI	TSOP-II, Lead-free	
	IS62WV10248EBLL-55BI	mini BGA	
	IS62WV10248EBLL-55BLI	mini BGA, Lead-free	


IS65WV10248EBLL (2.2V - 3.6V)

Automotive Range: -40°C to +125°C

Speed (ns)	Order Part No.	Package
45	IS65WV10248EBLL-45CTLA3	TSOP-II, Lead-free,
		Copper Lead-frame



PACKAGE INFORMATION

PACKAGE INFORMATION

