

PIN CONFIGURATION (2M x 8 Low Power)

48-pin mini BGA (B) (6mm x 8mm)

PIN DESCRIPTIONS

A0-A20	Address Inputs
CS1	Chip Enable 1 Input
CS2	Chip Enable 2 Input
ŌĒ	Output Enable Input
WE	Write Enable Input
1/00-1/07	Input/Output
NC	No Connection
VDD	Power
GND	Ground

IS62/65WV20488EALL IS62/65WV20488EBLL

TRUTH TABLE

Mode	WE	CS1	CS2	ŌĒ	I/O Operation	VDD Current
Not Selected	Х	Н	Х	Х	High-Z	ISB1, ISB2
(Power-down)	Х	Х	L	Х	High-Z	ISB1, ISB2
Output Disabled	Н	L	Н	Н	High-Z	Icc
Read	Н	L	Н	L	Dout	Icc
Write	L	L	Н	Х	Din	Icc

OPERATING RANGE (VDD)

σ· =·····σ···σ···σ··σ··σ··σ··σ··σ··σ··σ··σ·							
Range	Ambient Temperature	1.65V – 1.98V	2.2V - 3.6V				
Commercial	0°C to +70°C	IS62WV20488EALL (55ns)	IS62WV20488EBLL (45, 55ns)				
Industrial	-40°C to +85°C	IS62WV20488EALL (55ns)	IS62WV20488EBLL (45, 55ns)				
Automotive	-40°C to +125°C	IS65WV20488EALL (55ns)	IS65WV20488EBLL (55ns)				

ABSOLUTE MAXIMUM RATINGS AND OPERATING RANGE

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
Vterm	Terminal Voltage with Respect to GND	-0.2 to $+3.9(V_{DD}+0.3V)$	V
tBIAS	Temperature Under Bias	-55 to +125	°C
V_{DD}	V _{DD} Related to GND	-0.2 to +3.9(V _{DD} +0.3V)	V
tStg	Storage Temperature	-65 to +150	°C
I _{OUT}	DC Output Current (LOW)	20	mA

Notes:

OPERATING RANGE⁽¹⁾

Range	Device Marking	Ambient Temperature	VDD(min)	VDD(typ)	VDD(max)
Commercial	IS62WV20488EALL	0°C to +70°C	1.65V	1.8V	1.98V
Industrial	IS62WV20488EALL	-40°C to +85°C	1.65V	1.8V	1.98V
Automotive	IS65WV20488EALL	-40°C to +125°C	1.65V	1.8V	1.98V
Commercial	IS62WV20488EBLL	0°C to +70°C	2.2V	3.3V	3.6V
Industrial	IS62WV20488EBLL	-40°C to +85°C	2.2V	3.3V	3.6V
Automotive	IS65WV20488EBLL	-40°C to +125°C	2.2V	3.3V	3.6V

Note:

PIN CAPACITANCE (1)

Parameter	Symbol	Test Condition	Max	Units
Input capacitance	C _{IN}	T 25°C f 1 MHz \/ \/ (tvn)	10	pF
DQ capacitance (IO0–IO7)	C _{I/O}	$T_A = 25$ °C, $f = 1$ MHz, $V_{DD} = V_{DD}(typ)$	10	pF

Note:

THERMAL CHARACTERISTICS (1)

Parameter	Symbol	Rating	Units
Thermal resistance from junction to ambient (airflow = 1m/s)	$R_{\theta JA}$	38.3	°C/W
Thermal resistance from junction to case	$R_{ heta JC}$	6.86	°C/W

Note:

1. These parameters are guaranteed by design and tested by a sample basis only.

^{1.} Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

^{1.} Full device AC operation assumes a 100 µs ramp time from 0 to Vcc(min) and 200 µs wait time after Vcc stabilization.

^{1.} These parameters are guaranteed by design and tested by a sample basis only.

ELECTRICAL CHARACTERISTICS

IS62(5)WV20488EALL DC ELECTRICAL CHARACTERISTICS-I (OVER THE OPERATING RANGE)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -0.1 mA	1.4	_	V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA		0.2	V
V _{IH} ⁽¹⁾	Input HIGH Voltage		1.4	$V_{DD} + 0.2$	V
V _{IL} ⁽¹⁾	Input LOW Voltage		-0.2	0.4	V
I _{LI}	Input Leakage	$GND < V_{IN} < V_{DD}$	–1	1	μA
I _{LO}	Output Leakage	GND < V _{IN} < V _{DD} , Output Disabled	-1	1	μΑ

Notes:

IS62(5)WV20488EBLL DC ELECTRICAL CHARACTERISTICS-I (OVER THE OPERATING RANGE)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$2.2 \le V_{DD} < 2.7, I_{OH} = -0.1 \text{ mA}$	2.0	_	V
		$2.7 \le V_{DD} \le 3.6$, $I_{OH} = -1.0 \text{ mA}$	2.4		V
V _{OL}	Output LOW Voltage	$2.2 \le V_{DD} < 2.7, I_{OL} = 0.1 \text{ mA}$	_	0.4	V
		$2.7 \le V_{DD} \le 3.6$, $I_{OL} = 2.1$ mA	_	0.4	V
V _{IH} ⁽¹⁾	Input HIGH Voltage	2.2 ≤ V _{DD} < 2.7	1.8	$V_{DD} + 0.3$	V
		$2.7 \le V_{DD} \le 3.6$	2.2	$V_{DD} + 0.3$	V
V _{IL} ⁽¹⁾	Input LOW Voltage	$2.2 \le V_{DD} < 2.7$	-0.3	0.6	V
		$2.7 \le V_{DD} \le 3.6$	-0.3	0.8	V
ILI	Input Leakage	$GND < V_{IN} < V_{DD}$	– 1	1	μΑ
I _{LO}	Output Leakage	$GND < V_{IN} < V_{DD}$, Output Disabled	– 1	1	μA

Notes

^{1.} $V_{ILL}(min) = -1.0V$ AC (pulse width < 10ns). Not 100% tested. V_{IHH} (max) = VDD + 1.0V AC (pulse width < 10ns). Not 100% tested.

V_{ILL}(min) = -2.0V AC (pulse width < 10ns). Not 100% tested.
 V_{IHH} (max) = VDD + 2.0V AC (pulse width < 10ns). Not 100% tested.

IS62(5)WV20488EALL DC ELECTRICAL CHARACTERISTICS-II FOR POWER (OVER THE OPERATING RANGE)

Symbol	Parameter	Test Conditions	Grade	Тур.	Max.	Unit
ICC	V _{DD} Dynamic	$V_{DD}=V_{DD}(max)$, $I_{OUT}=0mA$, $f=f_{MAX}$	Com.	6	12	mΑ
	Operating		Ind.	-	12	
	Supply Current		Auto.	-	12	
ICC1	V _{DD} Static	$V_{DD}=V_{DD}(max)$, $I_{OUT}=0mA$, $f=0Hz$	Com.	3	6	mΑ
	Operating		Ind.	-	6	
	Supply Current		Auto.	-	6	
ISB1	CMOS Standby	$V_{DD}=V_{DD}(max),$	Com.	30	50	μA
Current (CMOS Inputs)	(1) 0V ≤ CS2 ≤ 0.2V or	Ind.	-	65	μA	
		(2) $\overline{\text{CS1}} \ge \text{V}_{\text{DD}} - 0.2\text{V}, \text{CS2} \ge \text{V}_{\text{DD}} - 0.2\text{V}$	Auto.	-	165	μΑ

Note:

IS62(5)WV20488EBLL DC ELECTRICAL CHARACTERISTICS-II FOR POWER (OVER THE OPERATING RANGE)

Symbol	Parameter	Test Conditions	Grade	Тур.	Max.	Unit
ICC	V _{DD} Dynamic	$V_{DD}=V_{DD}(max)$, $I_{OUT}=0mA$, $f=f_{MAX}$	Com.	6	12	mΑ
	Operating		Ind.	-	12	
	Supply Current		Auto.	-	12	
ICC1	V _{DD} Static	$V_{DD}=V_{DD}(max)$, $I_{OUT}=0mA$, $f=0Hz$	Com.	3	6	mA
	Operating		Ind.	-	6	
	Supply Current		Auto.	-	6	
ISB1	CMOS Standby	$V_{DD}=V_{DD}(max),$	Com.	30	50	μΑ
	Current (CMOS Inputs)	(1) 0V ≤ CS2 ≤ 0.2V or	Ind.	-	65	μA
		(2) $\overline{\text{CS1}} \ge \text{V}_{\text{DD}} - 0.2\text{V}, \text{CS2} \ge \text{V}_{\text{DD}} - 0.2\text{V}$	Auto.	-	165	μA

Note:

Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at VDD = VDD(typ), TA = 25°C

Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at VDD = VDD(typ), TA = 25°C

AC CHARACTERISTICS⁽⁶⁾ (OVER OPERATING RANGE)

READ CYCLE AC CHARACTERISTICS

Parameter	Symbol	45ns		55ns		unit	notos
Farameter	Symbol	Min	Max	Min	Max	unit	notes
Read Cycle Time	tRC	45	-	55	-	ns	1,5
Address Access Time	tAA	-	45	-	55	ns	1
Output Hold Time	tOHA	8	-	8	-	ns	1
CS1, CS2 Access Time	tACS1/tACS2	-	45	-	55	ns	1
OE Access Time	tDOE	-	22	-	25	ns	1
OE to High-Z Output	tHZOE	-	18	-	18	ns	2
OE to Low-Z Output	tLZOE	5	-	5	-	ns	2
CS1, CS2 to High-Z Output	tHZCS//tHZCS2	-	18	-	18	ns	2
CS1, CS2 to Low-Z Output	tLZCS/tLZCS2	10	-	10	-	ns	2

WRITE CYCLE AC CHARACTERISTICS

Davamatar	Complete L	45ns		55ns			
Parameter	Symbol	Min	Max	Min	Max	unit	notes
Write Cycle Time	tWC	45	-	55	-	ns	1,3,5
CS1,CS2 to Write End	tSCS1/tSCS2	35	-	40	-	ns	1,3
Address Setup Time to Write End	tAW	35	-	40	-	ns	1,3
Address Hold from Write End	tHA	0	-	0	-	ns	1,3
Address Setup Time	tSA	0	-	0	-	ns	1,3
WE Pulse Width	tPWE	35	-	40	-	ns	1,3,4
Data Setup to Write End	tSD	28	-	28	-	ns	1,3
Data Hold from Write End	tHD	0	-	0	-	ns	1,3
WE LOW to High-Z Output	tHZWE	-	18	-	18	ns	2,3
WE HIGH to Low-Z Output	tLZWE	10	-	10	-	ns	2,3

Notes

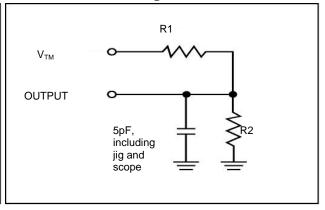
- 1. Tested with the load in Figure 1.
- 2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. tHZOE, tHZCS, tHZB, and tHZWE transitions are measured when the output enters a high impedance state. Not 100% tested.
- 3. The internal write time is defined by the overlap of $\overline{CS1}$ =LOW, CS2=HIGH, (\overline{UB} or \overline{LB})=LOW, and \overline{WE} =LOW. All four conditions must be in valid states to initiate a Write, but any condition can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.
- 4. tPWE > tHZWE + tSD when OE is LOW.
- Address inputs must meet V_{IH} and V_{IL} SPEC during this period. Any glitch or unknown inputs are not permitted. Unknown input with standby mode is acceptable.
- 6. Data retention characteristics are defined later in DATA RETENTION CHARACTERISTICS.

AC TEST CONDITIONS (OVER THE OPERATING RANGE)

Parameter	Symbol	Conditions	Units
Input Rise Time	T _R	1.0	V/ns
Input Fall Time	T _F	1.0	V/ns
Output Timing Reference Level	V_{REF}	½ V _{TM}	V
Output Load Conditions	Refer to Figure 1 and 2		

OUTPUT LOAD CONDITIONS FIGURES

Figure1

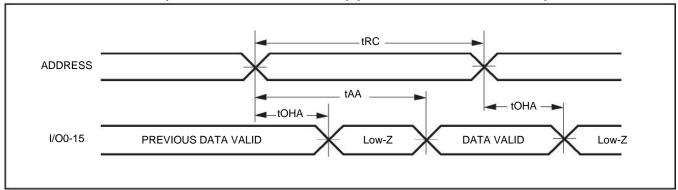

R1

V_{TM}

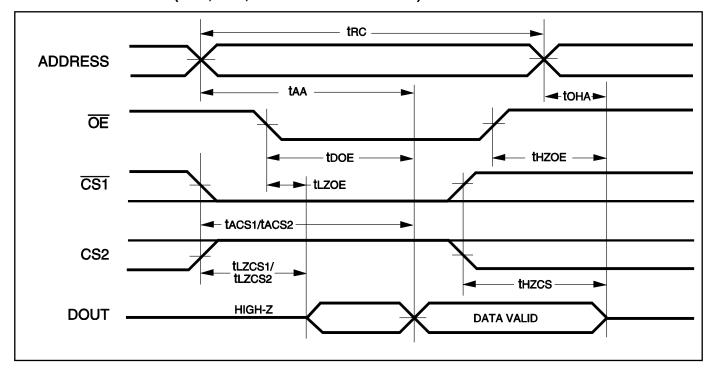
OUTPUT

30pF, including jig and scope

Figure2



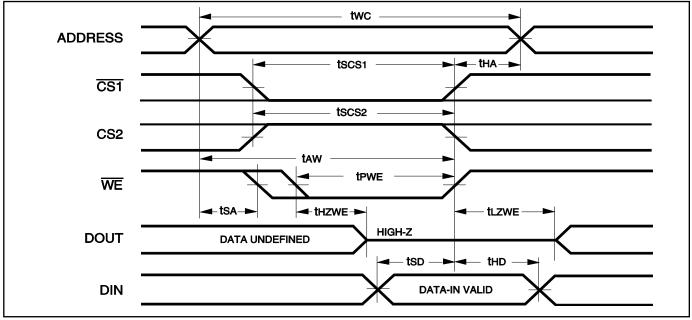
Parameters	V _{DD} =1.65~1.98V	V _{DD} =2.2~2.7V	V _{DD} =2.7~3.6V
R1	13500Ω	16667Ω	1103Ω
R2	10800Ω	15385Ω	1554Ω
V_{TM}	VDD	VDD	VDD



TIMING DIAGRAM

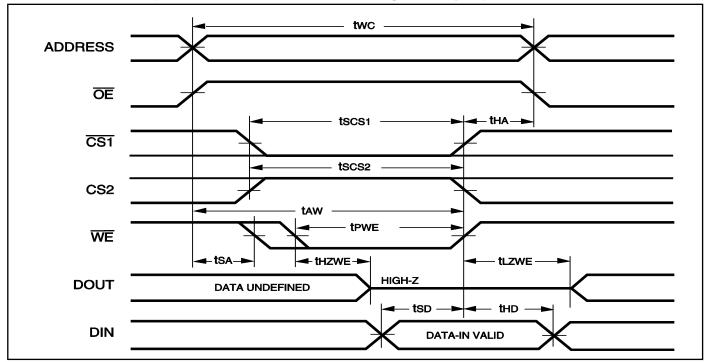
READ CYCLE NO. $1^{(1,2)}$ (ADDRESS CONTROLLED) ($\overline{CS1} = \overline{OE} = V_{IL}$, $CS2 = \overline{WE} = V_{IH}$)

READ CYCLE NO. 2^(1,3) ($\overline{\text{CS1}}$, CS2, AND $\overline{\text{OE}}$ CONTROLLED)



Notes:

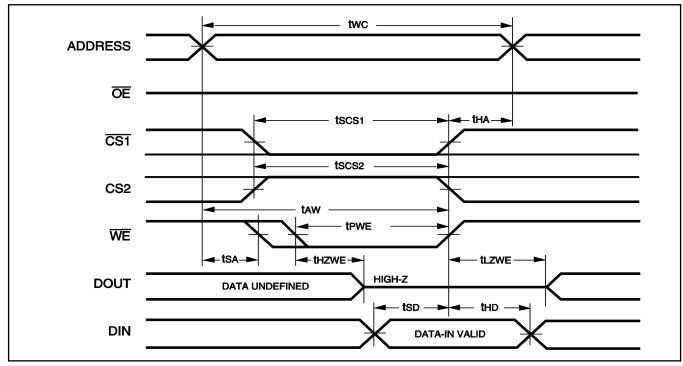
- 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , $\overline{CS1}$ = ViI. $CS2=\overline{WE}$ =VIH.
- 3. Address is valid prior to or coincident with $\overline{\text{CS1}}$ LOW and CS2 HIGH transition.


WRITE CYCLE NO. 1 ($\overline{CS1}$ CONTROLLED, \overline{OE} = HIGH OR LOW)

Notes:

- tHZWE is based on the assumption when tSA=0nS after READ operation. Actual DOUT for tHZWE may not appear if OE goes high before Write Cycle. tHZOE is the time DOUT goes to High-Z after OE goes high.
- 2. During this period the I/Os are in output state. Do not apply input signals.

WRITE CYCLE NO. 2 (WE Controlled: OE is HIGH During Write Cycle)



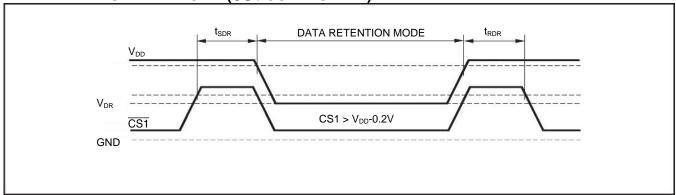
Notes:

- tHZWE is based on the assumption when tSA=0nS after READ operation. Actual DOUT for tHZWE may not appear if OE goes high before Write Cycle. tHZOE is the time DOUT goes to High-Z after goes high.
- 2. During this period the I/Os are in output state. Do not apply input signals.

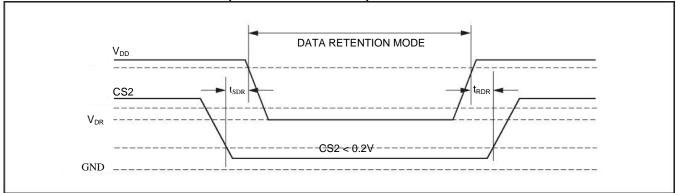
WRITE CYCLE NO. 3 (WE CONTROLLED: OE IS LOW DURING WRITE CYCLE)

Notes:

If $\overline{\text{OE}}$ is low during write cycle, tHZWE must be met in the application. Do not apply input signal during this period. Data output from the previous READ operation will drive IO BUS.



DATA RETENTION CHARACTERISTICS


Symbol	Parameter	Test Condition	OPTION	Min.	Typ. ⁽²⁾	Max.	Unit
V_{DR}	V _{DD} for Data	See Data Retention Waveform	IS62(5)WV20488EALL	1.5		-	V
	Retention		IS62(5)WV20488EBLL	1.5		-	V
I _{DR}	Data Retention	$V_{DD} = V_{DR}(min),$	Com.	-	-	50	uA
	Current	(1) $0V \le CS2 \le 0.2V$, or (2) $\overline{CS1} \ge V_{DD} - 0.2V$, $CS2 \ge V_{DD} - 0.2V$	Ind.	-	-	65	
			Auto	-	-	165	
t _{SDR}	Data Retention Setup Time	See Data Retention Waveform		0	-	-	ns
t _{RDR}	Recovery Time	See Data Retention Waveform		tRC	-	-	ns

Note:

DATA RETENTION WAVEFORM (CS1 CONTROLLED)

If CS1>VDD-0.2V, all other inputs including CS2 must meet this condition.
 Typical values are measured at VDD=VDR(min), TA = 25°C and not 100% tested.

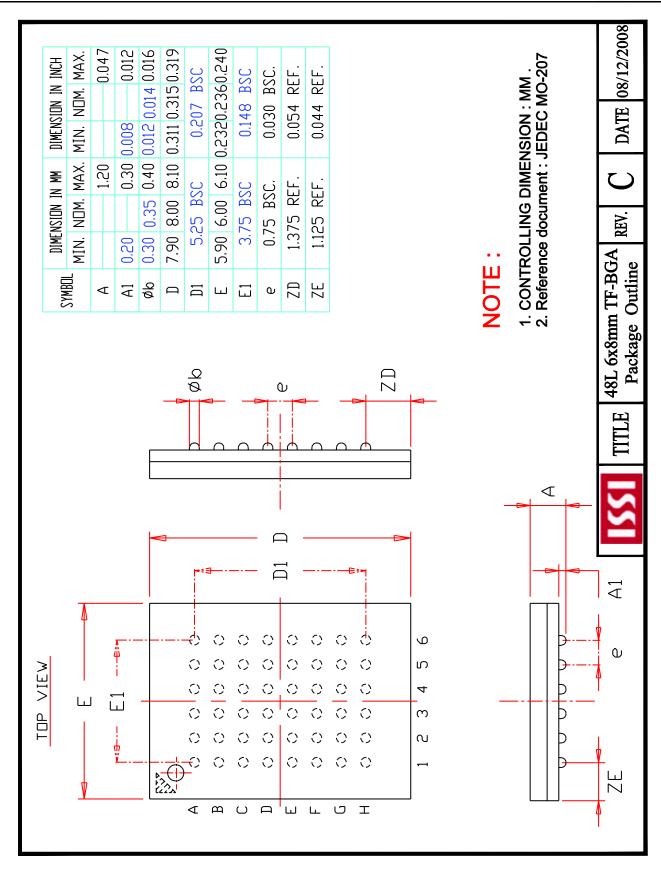
ORDERING INFORMATION: IS62WV20488EALL

1.65V-1.98V Industrial Range (-40°C to +85°C)

Speed (ns)	Order Part No	Package
55	IS62WV20488EALL-55BI	48-pin mini BGA (6mmx8mm)
	IS62WV20488EALL-55BLI	48-pin mini BGA (6mmx8mm), Lead-free

ORDERING INFORMATION: IS62WV20488EBLL

2.2V-3.6V Industrial Range (-40°C to +85°C)


Speed (ns)	Order Part No	Package
45	IS62WV20488EBLL-45BI	48-pin mini BGA (6mmx8mm)
	IS62WV20488EBLL-45BLI	48-pin mini BGA (6mmx8mm), Lead-free
55	IS62WV20488EBLL-55BI	48-pin mini BGA (6mmx8mm)
	IS62WV20488EBLL-55BLI	48-pin mini BGA (6mmx8mm), Lead-free

ORDERING INFORMATION: IS65WV20488EBLL

2.2V-3.6V Automotive Range (-40°C to +125°C)

Speed (ns)	Order Part No	Package
55	IS65WV20488EBLL-55BA3	48-pin mini BGA (6mmx8mm)
	IS65WV20488EBLL-55BLA3	48-pin mini BGA (6mmx8mm), Lead-free

