ADG661/ADG662/ADG663-SPECIFICATIONS¹

Dual Supply (V_{DD} = +5 V ± 10%, V_{SS} = -5 V ± 10%, GND = 0 V, unless otherwise noted)

	B Versions			
Parameter	+25°C	-40°C to +85°C	Units	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range R _{ON}	30 38	V _{DD} to V _{SS}	V Ω typ Ω max	$V_D = -3.5 \text{ V to } +3.5 \text{ V}, \text{ I}_S = -10 \text{ mA};$ $V_{DD} = +4.5 \text{ V}, \text{ V}_{SS} = -4.5 \text{ V}$
LEAKAGE CURRENTS Source OFF Leakage I _S (OFF) Drain OFF Leakage I _D (OFF) Channel ON Leakage I _D , I _S (ON)	$\begin{array}{c} \pm 0.025 \\ \pm 0.1 \\ \pm 0.025 \\ \pm 0.1 \\ \pm 0.05 \\ \pm 0.2 \end{array}$	± 2.5 ± 2.5 ± 5	nA typ nA max nA typ nA max nA typ nA max	$\begin{split} V_{DD} &= +5.5 \text{ V}, V_{SS} = -5.5 \text{ V} \\ V_D &= \pm 4.5 \text{ V}, V_S = \pm 4.5 \text{ V}; \\ \text{Test Circuit 2} \\ V_D &= \pm 4.5 \text{ V}, V_S = \pm 4.5 \text{ V}; \\ \text{Test Circuit 2} \\ V_D &= V_S = \pm 4.5 \text{ V}; \\ \text{Test Circuit 3} \end{split}$
$\begin{array}{l} \text{DIGITAL INPUTS} \\ \text{Input High Voltage, } V_{\text{INH}} \\ \text{Input Low Voltage, } V_{\text{INL}} \\ \text{Input Current} \\ I_{\text{INL}} \text{ or } I_{\text{INH}} \end{array}$	0.005	2.4 0.8 ±0.1	V min V max μA typ μA max	$V_{IN} = V_{INL}$ or V_{INH}
$\begin{array}{c} \hline DYNAMIC \ CHARACTERISTICS^2 \\ t_{ON} \\ \hline \\ t_{OFF} \\ \hline \\ Break-Before-Make \ Time \ Delay, \ t_D \\ (ADG663 \ Only) \\ Charge \ Injection \\ \hline \\ OFF \ Isolation \\ \hline \\ Channel-to-Channel \ Crosstalk \\ \hline \\ C_S \ (OFF) \\ C_D \ (OFF) \\ C_D, \ C_S \ (ON) \end{array}$	150 55 80 6 70 90 9 9 28	275 120	ns typ ns max ns typ ns max ns typ pC typ dB typ dB typ dB typ pF typ pF typ pF typ	$ \begin{array}{l} R_L = 300 \; \Omega, \; C_L = 35 \; pF; \\ V_S = \pm 3 \; V; \; Test \; Circuit \; 4 \\ R_L = 300 \; \Omega, \; C_L = 35 \; pF; \\ V_S = \pm 3 \; V; \; Test \; Circuit \; 4 \\ R_L = 300 \; \Omega, \; C_L = 35 \; pF; \\ V_{S1} = V_{S2} = +3 \; V; \; Test \; Circuit \; 5 \\ V_S = 0 \; V, \; R_S = 0 \; \Omega, \; C_L = 10 \; nF; \\ Test \; Circuit \; 6 \\ R_L = 50 \; \Omega, \; C_L = 5 \; pF, \; f = 1 \; MHz; \\ Test \; Circuit \; 7 \\ R_L = 50 \; \Omega, \; C_L = 5 \; pF, \; f = 1 \; MHz; \\ Test \; Circuit \; 8 \\ f = 1 \; MHz \\ f = 1 \; MHz \\ f = 1 \; MHz \\ \end{array} $
POWER REQUIREMENTS V _{DD} I _{DD} I _{SS}	0.0001	+4.5/5.5 -4.5/5.5 1	V min/max V min/max μA typ μA max μA typ μA max	V_{DD} = +5.5 V, V_{SS} = -5.5 V Digital Inputs = 0 V or 5 V

NOTES

¹Temperature ranges are as follows: B Versions, -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

B Versions				
Parameter	+25°C	-40°C to +85°C	Units	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 V to V _{DD}	V	
R _{ON}	45		Ω typ	$V_{\rm D} = 0$ V to +3.5 V, $I_{\rm S} = -10$ mA;
	68	75	Ω max	$V_{DD} = +4.5 \text{ V}$
LEAKAGE CURRENTS				$V_{DD} = +5.5 V$
Source OFF Leakage I _S (OFF)	±0.025		nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$
	±0.1	± 2.5	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.025		nA typ	$V_{\rm D} = 4.5 \text{ V}/1 \text{ V}, V_{\rm S} = 1 \text{ V}/4.5 \text{ V};$
	±0.1	± 2.5	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	± 0.05		nA typ	$V_{\rm D} = V_{\rm S} = +4.5 \text{ V/}+1 \text{ V};$
	±0.2	± 5	nA max	Test Circuit 3
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		± 0.1	μA max	
DYNAMIC CHARACTERISTICS ²				
t _{ON}	250		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		400	ns max	$V_S = +2 V$; Test Circuit 4
t _{OFF}	45		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		100	ns max	$V_{\rm S}$ = +2 V; Test Circuit 4
Break-Before-Make Time Delay, t _D	140		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
(ADG663 Only)			G .	$V_{S1} = V_{S2} = +2$ V; Test Circuit 5
Charge Injection	12		pC typ	$V_{\rm S} = 0 V, R_{\rm S} = 0 \Omega, C_{\rm L} = 10 \text{ nF};$
	70			Test Circuit 6
OFF Isolation	70		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHZ$;
Channel to Channel Crosstall	00		dR two	$P_{1} = 50 \text{ O} C_{2} = 5 \text{ pE} f = 1 \text{ MHz}$
Chamler-to-Chamler Crosstark	30		ub typ	$M_{L} = 50.52, C_{L} = 5 \text{ pr}, 1 = 1 \text{ WH12,}$
$C_{\rm s}$ (OFF)	9		nF typ	f = 1 MHz
$C_{\rm D}$ (OFF)	9		pF typ	f = 1 MHz
$C_{\rm D}, C_{\rm S}$ (ON)	28		pF typ	f = 1 MHz
POWER REQUIREMENTS				
		+4.5/5.5	V min/max	
Inn	0.0001	. 10.010	$\mu A typ$	$V_{DD} = +5.5 V$
		1	μA max	Digital Inputs = $0 \text{ V or } 5 \text{ V}$
			· ·	

Single Supply (V_{DD} = +5 V ± 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted)

NOTES

 $^1{\rm Temperature}$ ranges are as follows: B Versions, $-40^\circ{\rm C}$ to $+85^\circ{\rm C}.$ $^2{\rm Guaranteed}$ by design, not subject to production test.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS¹

 $(T_A = +25^{\circ}C \text{ unless otherwise noted})$

Lead Temperature, Soldering	
Vapor Phase (60 secs)	+215°C
Infrared (15 secs)	+220°C

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

ORDERING GUIDE

Model	Temperature	Package	Package
	Range	Description	Option
ADG661BRU	-40° C to $+85^{\circ}$ C	16-Lead TSSOP	RU-16
ADG662BRU	-40° C to $+85^{\circ}$ C	16-Lead TSSOP	RU-16
ADG663BRU	-40° C to $+85^{\circ}$ C	16-Lead TSSOP	RU-16

CAUTION_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG661/ADG662/ADG663 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION

IN1 1 D1 2 S1 3 V _{SS} 4 GND 5 S4 6 D4 7 IN4 8	ADG661 ADG662 ADG663 TOP VIEW (Not to Scale)	16 IN2 15 D2 14 S2 13 V _{DD} 12 NC 11 S3 10 D3 9 IN3
NC = NO CONNECT		

Table I. Truth Table (ADG661/ADG662)

ADG661 In	ADG662 In	Switch Condition
0	1	ON
1	0	OFF

Table II. Truth Table (ADG663)

Logic	Switch 1, 4	Switch 2, 3
0	OFF	ON
1	ON	OFF

ADG661/ADG662/ADG663

TERMINOLOGY

V _{DD}	Most positive power supply potential.
V _{SS}	Most negative power supply potential in dual supplies. In single supply applications, it may be connected to GND.
GND	Ground (0 V) Reference.
S	Source Terminal. May be an input or output.
D	Drain Terminal. May be an input or output.
IN	Logic Control Input.
R _{ON}	Ohmic resistance between D and S.
I _S (OFF)	Source leakage current with the switch "OFF."
I _D (OFF)	Drain leakage current with the switch "OFF."
I _D , I _S (ON)	Channel leakage current with the switch "ON."
$V_D(V_S)$	Analog voltage on terminals D, S.
C _S (OFF)	"OFF" Switch Source Capacitance.
C _D (OFF)	"OFF" Switch Drain Capacitance.
C _D , C _S (ON)	"ON" Switch Capacitance.
t _{ON}	Delay between applying the digital control input and the output switching on.
t _{OFF}	Delay between applying the digital control input and the output switching off.
t _D	"OFF" time or "ON" time measured between the 90% points of both switches, when
Crosstalk	A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
Charge Injection	A measure of the glitch impulse transferred from the digital input to analog output during switching.

Typical Performance Characteristics

Figure 1. On Resistance as a Function of V_D (V_S) Dual Supplies

Figure 2. On Resistance as a Function of V_D (V_S) for Different Temperatures

Figure 3. On Resistance as a Function of V_D (V_S) Single Supply

Figure 4. Supply Current vs. Input Switching Frequency

Figure 7. Leakage Currents as a Function of V_D (V_S)

Figure 5. Leakage Currents as a Function of Temperature

Figure 8. Crosstalk vs. Frequency

Figure 6. Off Isolation vs. Frequency

Test Circuits

4. Switching Times

5. Break-Before-Make Time Delay

Test Circuits (Continued)

8. Channel-to-Channel Crosstalk

APPLICATION

Figure 9 illustrates a precise, sample-and-hold circuit. An AD845 is used as the input buffer while the output operational amplifier is an OP07. During the track mode, SW1 is closed and the output V_{OUT} follows the input signal V_{IN} . In the hold mode, SW1 is opened and the signal is held by the hold capacitor C_{H} .

Due to switch and capacitor leakage, the voltage on the hold capacitor will decrease with time. The ADG661/ADG662/ ADG663 minimizes this droop due to its low leakage specifications. The droop rate is further minimized by the use of a polystyrene hold capacitor. The droop rate for the circuit shown is typically 15 μ V/ μ s.

A second switch SW2, which operates in parallel with SW1, is included in this circuit to reduce pedestal error. Since both switches will be at the same potential, they will have a differential effect on the op amp OP07 which will minimize charge injection effects. Pedestal error is also reduced by the compensation network $R_{\rm C}$ and $C_{\rm C}$. This compensation network also reduces the hold time glitch while optimizing the acquisition time. Using the illustrated op amps and component values, the pedestal error has a maximum value of 5 mV over the ± 3 V input range. The acquisition time is 2.5 ms while the settling time is 1.85 μ s.

Figure 9. Accurate Sample-and-Hold

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

PRINTED IN U.S.A.